Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T01:02:24.064Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Li4Ti5O12 Anode Materials with Enhanced High-Rate Performance in Lithium-Ion Batteries

Published online by Cambridge University Press:  01 March 2018

Lei Wang
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794
Christopher Tang
Affiliation:
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
Kenneth J. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
Esther S. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794 Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY11973
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794 Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY11973
*
*corresponding author: amy.marschilok@stonybrook.edu.
Get access

Abstract

Li4Ti5O12 (LTO) represents a promising anode material for lithium ion batteries, however, it suffers from limitations associated with poor intrinsic electron conductivity as well as moderate ionic conductivity. Hence, to achieve the goal of creating LTO anodes with improved high-rate performance, we have put forth a number of targeted fundamental strategies. Herein we discuss the roles of controllably tuning (i) morphology, (ii) attachment modalities of carbon, and (iii) ion doping of the LTO material. In addition, we also demonstrated in situ studies of lithiation-driven structural transformations in LTO via a combination of X-ray absorption spectroscopy and ab initio calculations, which have been proven to be powerful tools to probe the negligible volume change and extraordinary stability of LTO upon repeated charge/discharge cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

ŧ

Equivalent contributions.

References

Zhu, G.-N., Wang, Y.-G. and Xia, Y.-Y., Energy Environ. Sci. 5(5), 6652 (2012).Google Scholar
Wang, L., Yue, S. Y., Zhang, Q., Zhang, Y. M., Li, Y. R., Lewis, C. S., Takeuchi, K. J., Marschilok, A. C., Takeuchi, E. S. and Wong, S. S., ACS Energy Lett. 2(6), 14651478 (2017).CrossRefGoogle Scholar
Ma, J., Wang, C. and Wroblewski, S., J. Power Sources 164 (2), 849856 (2007).Google Scholar
Kavan, L., Procházka, J., Spitler, T. M., Kalbáč, M., Zukalová, M. t., Drezen, T. and Grätzel, M., J. Electrochem. Soc. 150 (7), A1000 (2003).CrossRefGoogle Scholar
Lim, J., Choi, E., Mathew, V., Kim, D., Ahn, D., Gim, J., Kang, S. H. and Kim, J., J. Electrochem. Soc. 158 (3), A275A280 (2011).Google Scholar
Sun, L., Wang, J. P., Jiang, K. L. and Fan, S. S., J. Power Sources 248, 265272 (2014).CrossRefGoogle Scholar
Shen, L. F., Uchaker, E., Zhang, X. G. and Cao, G. Z., Adv. Mater. 24 (48), 65026506 (2012).Google Scholar
Liu, J., Song, K. P., van Aken, P. A., Maier, J. and Yu, Y., Nano Lett. 14 (5), 25972603 (2014).CrossRefGoogle Scholar
Tang, Y. F., Yang, L., Fang, S. H. and Qiu, Z., Electrochim. Acta 54 (26), 62446249 (2009).Google Scholar
Chen, J. Z., Yang, L., Fang, S. H. and Tang, Y. F., Electrochim. Acta 55 (22), 65966600 (2010).Google Scholar
Kong, D., Ren, W., Luo, Y., Yang, Y. and Cheng, C., J. Mater. Chem. A 2 (47), 2022120230 (2014).Google Scholar
Yi, T.-F., Xie, Y., Jiang, L.-J., Shu, J., Yue, C.-B., Zhou, A.-N. and Ye, M.-F., RSC Adv. 2 (8), 35413547 (2012).CrossRefGoogle Scholar
Ni, H. F. and Fan, L. Z., J. Power Sources 214, 195199 (2012).Google Scholar
Shen, L., Zhang, X., Uchaker, E., Yuan, C. and Cao, G., Adv. Energy Mater. 2 (6), 691698 (2012).Google Scholar
Xu, G. B., Li, W., Yang, L. W., Wei, X. L., Ding, J. W., Zhong, J. X. and Chu, P. K., J. Power Sources 276, 247254 (2015).Google Scholar
Wang, L., Zhang, Y. M., Scofield, M. E., Yue, S. Y., McBean, C., Marschilok, A. C., Takeuchi, K. J., Takeuchi, E. S. and Wong, S. S., ChemSusChem 8 (19), 33043313 (2015).Google Scholar
Zhao, Y., Wang, L. P., Sougrati, M. T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M. and Xu, Z., Adv. Energy Mater., 7, 1601424 (2017).CrossRefGoogle Scholar
Wang, L., Zhang, Y., McBean, C. L., Scofield, M. E., Yin, J., Marschilok, A. C., Takeuchi, K. J., Takeuchi, E. S. and Wong, S. S., J. Electrochem. Soc. 164 (2), A524A534 (2017).CrossRefGoogle Scholar
Zhang, Q. Y., Zhang, S. H., Ning, F. H., Lu, X., Liu, Y., Nie, L. H., Ouyang, C. Y. and Zhang, L. Z., Energy Technol. 5 (4), 539543 (2017).Google Scholar
Zhang, Q. Y., Zhang, C. L., Li, B., Kang, S. F., Li, X. and Wang, Y. G., Electrochim. Acta 98, 146152 (2013).CrossRefGoogle Scholar
Zhang, Y., Wang, L., Guo, H., Li, J., Stach, E. A., Tong, X., Takeuchi, E. S., Takeuchi, K. J., Liu, P., Marschilok, A. C., and Wong, S. S., Chem. Mater., in print (2018).Google Scholar
Zhang, W., Topsakal, M., Cama, C., Pelliccione, C. J., Zhao, H., Ehrlich, S., Wu, L., Zhu, Y., Frenkel, A. I., Takeuchi, K. J., Takeuchi, E. S., Marschilok, A. C., Lu, D. and Wang, F., J. Am. Chem. Soc. 139 (46), 1659116603 (2017).CrossRefGoogle Scholar