Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T19:44:13.052Z Has data issue: false hasContentIssue false

Suppression of Near-interface Oxidation in Thermally-evaporated BaSi2 Films and Its Effects on Preferred Orientation and the Rectification Behavior of n-BaSi2/p+-Si Diodes

Published online by Cambridge University Press:  11 January 2018

Kosuke O. Hara*
Affiliation:
Center for Crystal Science and Technology, University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511, Japan
Keisuke Arimoto
Affiliation:
Center for Crystal Science and Technology, University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511, Japan
Junji Yamanaka
Affiliation:
Center for Instrumental Analysis, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
Kiyokazu Nakagawa
Affiliation:
Center for Crystal Science and Technology, University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511, Japan
Noritaka Usami
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Get access

Abstract

Thermal evaporation is a simple method to fabricate a BaSi2 film, a new solar cell material consisting of earth-abundant elements. In this study, we optimized the evaporation process and suppressed near-interface oxidation in evaporated BaSi2 films on Si(100) substrates, which has been detected in previous studies. Composition depth profiles determined by Auger electron spectroscopy show the decrease of oxygen concentration near the interface to the background level by optimizing the source pre-melting condition. By reducing oxygen concentration, the BaSi2 film becomes more preferentially oriented toward [100] as long as the deposition rate is not changed, as evidenced by X-ray diffraction. It is also shown that the rectification behavior of n-BaSi2/p+-Si diodes improves by suppressing the near-interface oxidation.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suemasu, T. and Usami, N., J. Phys. D: Appl. Phys. 50, 023001 (2016).Google Scholar
Inomata, Y., Nakamura, T., Suemasu, T. and Hasegawa, F., Jpn. J. Appl. Phys. 43, L478 (2004).Google Scholar
Toh, K., Hara, K. O., Usami, N., Saito, N., Yoshizawa, N., Toko, K. and Suemasu, T., J. Cryst. Growth 345, 16 (2012).CrossRefGoogle Scholar
Toh, K., Saito, T. and Suemasu, T., Jpn. J. Appl. Phys. 50, 068001 (2011).Google Scholar
Latiff, N. A. A., Yoneyama, T., Shibutami, T., Matsumaru, K., Toko, K. and Suemasu, T., Phys. Status Solidi C10, 1759 (2013).Google Scholar
Hara, K. O., Usami, N., Nakamura, K., Takabe, R., Baba, M., Toko, K. and Suemasu, T., Appl. Phys. Express 6, 112302 (2013).Google Scholar
Hara, K. O., Usami, N., Nakamura, K., Takabe, R., Baba, M., Toko, K. and Suemasu, T., Phys. Status Solidi C10, 1677 (2013).Google Scholar
Bayu, M. E., Trinh, C. T., Takabe, R., Yachi, S., Toko, K., Usami, N. and Suemasu, T., Jpn. J. Appl. Phys. 56, 05DB01 (2017).Google Scholar
Baba, M., Toh, K., Toko, K., Saito, N., Yoshizawa, N., Jiptner, K., Sekiguchi, T., Hara, K. O., Usami, N. and Suemasu, T., J. Cryst. Growth 348, 75 (2012).Google Scholar
Suemasu, T., Jpn. J. Appl. Phys. 54, 07JA01 (2015).Google Scholar
Tsukahara, D., Yachi, S., Takeuchi, H., Takabe, R., Du, W., Baba, M., Li, Y., Toko, K., Usami, N. and Suemasu, T., Appl. Phys. Lett. 108, 152101 (2016).CrossRefGoogle Scholar
Yachi, S., Takabe, R., Takeuchi, H., Toko, K. and Suemasu, T., Appl. Phys. Lett.109, 072103 (2016).Google Scholar
Hara, K. O., Nakagawa, Y., Suemasu, T. and Usami, N., Jpn. J. Appl. Phys. 54, 07JE02 (2015).Google Scholar
Nakagawa, Y., Hara, K. O., Suemasu, T. and Usami, N., Jpn. J. Appl. Phys. 54, 08KC03 (2015).Google Scholar
Hara, K. O., Trinh, C. T., Arimoto, K., Yamanaka, J., Nakagawa, K., Kurokawa, Y., Suemasu, T. and Usami, N., J. Appl. Phys. 120, 045103 (2016).Google Scholar
Suhara, T., Murata, K., Navabi, A., Hara, K. O., Nakagawa, Y., Trinh, C. T., Kurokawa, Y., Suemasu, T., Wang, K. L. and Usami, N., Jpn. J. Appl. Phys. 56, 05DB05 (2017).Google Scholar
Trinh, C. T., Nakagawa, Y., Hara, K. O., Takabe, R., Suemasu, T. and Usami, N., Mater. Res. Express 3, 076204 (2016).Google Scholar
Hara, K. O., Trinh, C. T., Nakagawa, Y., Kurokawa, Y., Arimoto, K., Yamanaka, J., Nakagawa, K. and Usami, N., JJAP Conf. Proc. 5, 011202 (2017).Google Scholar
Hara, K. O., Yamamoto, C., Yamanaka, J., Arimoto, K., Nakagawa, K. and Usami, N., Mater. Sci. Semicond. Process. 72, 93 (2017).Google Scholar
Hara, K. O., Yamamoto, C., Yamanaka, J., Arimoto, K., Nakagawa, K. and Usami, N., Jpn. J. Appl. Phys. under review.Google Scholar
Hegedus, S. S. and Shafarman, W. N., Prog. Photovolt.: Res. Appl. 12, 155 (2004).Google Scholar