Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T01:56:09.505Z Has data issue: false hasContentIssue false

Spiral diffusion of self-assembled dimers of Janus spheres

Published online by Cambridge University Press:  29 May 2017

John G. Gibbs*
Affiliation:
Department of Physics and Astronomy, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, U.S.A.
Amir Nourhani
Affiliation:
Department of Physics and Astronomy, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, U.S.A. Department of Physics, Pennsylvania State University, University Park, PA 16802, U.S.A.
Joel N. Johnson
Affiliation:
Department of Physics and Astronomy, Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, U.S.A.
Paul E. Lammert
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802, U.S.A.
*
Get access

Abstract

Janus spheres, micron-sized silica spheres half-coated with platinum, move rectilinearly away from the platinum side in aqueous hydrogen peroxide. Upon self-assembling, these colloidal particles can form dimers with different conformations that exhibit both rectilinear and rotational modes of motion depending upon the relative orientation of each Janus sphere. At the micron length-scale, stochastic rotational Brownian dynamics is of the order of deterministic dynamics, and their coupling results in effective diffusion, in addition to passive translational diffusion. For dimers with rotary motion, the dynamic coupling leads to spiral trajectories for an ensemble average of the displacement vector.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marchetti, M. C., Joanny, J., Ramaswamy, S., Liverpool, T., Prost, J., Rao, M., and Simha, R. A., Rev. Mod. Phys. 85, 1143 (2013).Google Scholar
Di Leonardo, R., Angelani, L., DellArciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M., Mecarini, F., De Angelis, F., and Di Fabrizio, E., Proc. Natl. Acad. Sci. 107, 9541 (2010).Google Scholar
Schwarz-Linek, J., Valeriani, C., Cacciuto, A., Cates, M., Proc. Acad. Sci. 109, 4052 (2012).Google Scholar
Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V. A., and Poon, W. C., Colloids Surf., B 137, 2 (2016).Google Scholar
Zöttl, A. and Stark, H., Phys. Rev. Lett. 112, 118101 (2014).Google Scholar
Vach, P. J., Walker, D., Fischer, P., Fratzl, P., and Faivre, D., J. Phys., D 50, 11LT03 (2017).Google Scholar
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., and Chaikin, P. M., Science 339, 936 (2013) .Google Scholar
Yan, J., Bloom, M., Bae, S. C., Luijten, E., and Granick, S., Nature 491, 578 (2012).CrossRefGoogle Scholar
Schamel, D., Mark, A. G., Gibbs, J. G., Miksch, C., Morozov, K. I., Leshansky, A. M., and Fischer, P., ACS Nano 8, 8794 (2014).CrossRefGoogle Scholar
Ghosh, A., Paria, D., Rangarajan, G., and Ghosh, A., J. Phys. Chem. Lett. 5, 62 (2013).CrossRefGoogle Scholar
Gangwal, S., Cayre, O. J., Bazant, M. Z., and Velev, O. D., Phys. Rev. Lett. 100, 058302 (2008).Google Scholar
Jiang, H.-R., Yoshinaga, N., and Sano, M., Phys. Rev. Lett. 105, 268302 (2010).Google Scholar
Sharifi-Mood, N., Koplik, J., and Maldarelli, C., Phys. Fluids 25, 012001 (2013).Google Scholar
Nourhani, A. and Lammert, P. E., Phys. Rev. Lett. 116, 178302 (2016).Google Scholar
Wang, Y., Hernandez, R. M., Bartlett, D. J., Bingham, J. M., Kline, T. R., Sen, A., Mallouk, T. E., et al. ., Langmuir 22, 10451 (2006).Google Scholar
de Graaf, J., Rempfer, G., and Holm, C., IEEE Trans. Nanobiosci. 14, 272 (2015).Google Scholar
Nourhani, A., Ebbens, S. J., Gibbs, J. G., and Lammert, P. E., Phys. Rev. E 94, 030601 (2016).CrossRefGoogle Scholar
Kummel, F., ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Lowen, H., and Bechinger, C., Phys. Rev. Lett. 110, 198302 (2013).CrossRefGoogle Scholar
Popescu, M. N., Uspal, W. E., and Dietrich, S., Eur. Phys. J. Spec. Top. 225, 2189 (2016).Google Scholar
Huang, M.-J., Schofield, J., and Kapral, R., Soft Matter 12, 5581 (2016).Google Scholar
Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C., and Speck, T., Phys. Rev. Lett. 110, 238301 (2013).Google Scholar
Nourhani, A., Lammert, P. E., Borhan, A., and Crespi, V. H., Phys. Rev. E 89, 062304 (2014).Google Scholar
Ebbens, S., Jones, R. A., Ryan, A. J., Golestanian, R., and Howse, J. R., Phys. Rev. E 82, 015304 (2010).CrossRefGoogle Scholar
Nourhani, A., Byun, Y.-M., Lammert, P. E., Borhan, A., and Crespi, V. H., Phys. Rev. E 88, 062317 (2013).Google Scholar
Johnson, J. N., Nourhani, A., Peralta, R., McDonald, C., Thiesing, B., Mann, C. J., Lammert, P. E., and Gibbs, J. G., Phys. Rev. E 95, 042609 (2017).Google Scholar
Wittmeier, A., Holterhoff, A. L., Johnson, J., and Gibbs, J. G., Langmuir, 31, 10402 (2015).Google Scholar