Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T23:47:45.593Z Has data issue: false hasContentIssue false

Solution Based Synthesis of Cs4PbBr6 Perovskite Particles with High Luminescence and Stability

Published online by Cambridge University Press:  25 March 2018

Brian Billstrand
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Kaifu Bian
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Casey Karler
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Dongmei Ye
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Austin Hwang
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States; The University of New Mexico Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, Albuquerque, New Mexico 8713, United States
*
*(Email: hfan@sandia.gov)
Get access

Abstract

Low dimensional lead halide perovskite particles are of tremendous interest due to their size-tunable band gaps, low exciton binding energy, high absorption coefficients, outstanding quantum and photovoltaic efficiencies. Herein we report a new solution-based synthesis of stabilized Cs4PbBr6 perovskite particles with high luminescence. This method requires only mild conditions and produces colloidal particles that are ideal for highly efficient solution-based device fabrications. The synthesized microstructures not only display outstanding luminescence quantum yield but also long term stability in atmospheric conditions. Partial halide substitutions were also demonstrated to extend photoluminescence spectra of the perovskite particles. This convenient synthesis and optical tunability of Cs4PbBr6 perovskite particles will be advantageous for future applications of optoelectronic advices.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pazos-Outon, L., Szumilo, M., Lamboll, R., Richter, J., Crespo-Quesada, M., Abdi-Jalebi, M., Beeson, H., VruIni, M., Alsari, M., Snaith, H., Ehrler, B., Friend, R. and Deschler, F., Science. 351, 1430 (2016).CrossRefGoogle Scholar
Ha, S., Su, R., Xing, J., Zhang, Q. and Qiong, X., Chem Science, 8, 2522 (2017).CrossRefGoogle Scholar
Zhang, Y., Saidaminov, M., Dursun, I., Yang, H., Murali, B., Alarousu, E., Yengel, E., Alshankiti, B., Bakr, O. and Mohammed, O., J. Phys. Chem. Lett.. 8, 961 ( 2017).CrossRefGoogle Scholar
Tan, H., Jain, A., Voznyy, O., Lan, X., Arquer, F., Fan, J., Quintero-Bermudez, R. and E, S.., Science. 355, 722 (2017).CrossRefGoogle Scholar
Wang, K., Wu, L., Li, L., Yao, H., Qian, H. and Yu, S., Angew. Chem. Int. Ed.. 55, 8328 (2016).CrossRefGoogle Scholar
Wei, W. and Hu, Y., Int. J. Energy Res. 41, 1063 (2017).CrossRefGoogle Scholar
Slavney, A., Smaha, R., Smith, I., Jaffe, A., Umeyama, D. and Karunadasa, H., Inorg. Chem. 56, 46 (2017).CrossRefGoogle Scholar
Swarnkar, A., Marshall, R., Sanehira, E., Chernomordik, B., Moore, D., Christians, J., Chakrabarti, T. and Luther, J., Science. 354 92 (2016).CrossRefGoogle Scholar
Tong, Y., Bladt, E., Aygüler, M., Manzi, A., Milowska, K., Hintermayr, V., Docampo, P., Bals, S., Urban, A., Polavarapu, L. and Feldmann, J., Angew. Chem. Int. Ed. 55, 13887 ( 2016).CrossRefGoogle Scholar
Liu, Z., Lee, S., Ma, W., Bekenstein, Y., Ye, X., Nguyen, S., Zhang, S., Yang, P. and Alivisatos, P., J. Am. Chem. Soc. 139, 5309 (2017).CrossRefGoogle Scholar
Bella, F., Griffini, G., Correa-Baena, J., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S. and Gerbaldi, C., Science. 354, 203 (2016).CrossRefGoogle Scholar
Tsai, H., Nie, W., Blancon, J., Stoumpos, C., Asadpour, R., Harutyunyan, B., Neukirch, A., Verduzco, R., Crochet, J., Tretiak, S., Pedesseau, L., Even, J., Alam, M., Gupta, G., Lou, J., Ajayan, P., Bedzyk, M. and Kanatzidis, M., Nature. 536, 312 (2016).CrossRefGoogle Scholar
Saidaminov, M., Almutlaq, J., Sarmah, S., Dursun, I., Zhumekenov, A., Begum, R., Pan, J., Cho, N., Mohammed, O. and Bakr, O., ACS Energy Lett. 1, 840 (2016).CrossRefGoogle Scholar
Chen, D., Wan, Z., Chen, X., Yuan, Y. and Zhong, J., J. Mater. Chem. C 4, 10646 (2016).CrossRefGoogle Scholar
Protesescu, L., Yakunin, S., Bodnarchuk, M., Krieg, F., Caputo, R., Hendon, C., Yang, R., Walsh, A. and Kovalenko, M., Nano Lett. 15, 3692 (2015).CrossRefGoogle Scholar
Sichert, J., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K., Cortadella, R., Nickel, B., Cardenas-Daw, C., Stolarczyk, J., Urban, A. and Feldmann, J., Nano Lett. 15, 6521 (2015).CrossRefGoogle Scholar
Binek, A., Hanusch, C., Docampo, P. and Bein, T., J. Phys. Chem. Lett. 6, 1249 (2015).CrossRefGoogle Scholar
Xing, J., Yan, F., Zhao, Y., Chen, S., Yu, H., Zhang, Q., Zeng, R., Demir, H., Sun, X., Huan, A. and Xiong, Q., ACS Nano. 10, 6623 (2016).CrossRefGoogle Scholar
Takaba, H., Kimura, S. and Alam, M. K., Chemical Physics. 485, 22 (2017).CrossRefGoogle Scholar
Talbert, E. M., Zarick, H. F., Boulesbaa, A., Soetan, N., Puretzky, A. A., Geoheganb, D. B. and Bardhan, R., Nanoscale. 9, 11833 (2017).CrossRefGoogle Scholar