Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:48:30.627Z Has data issue: false hasContentIssue false

Silver Hardening via Hypersonic Impacts

Published online by Cambridge University Press:  12 February 2018

Eliezer Fernando Oliveira*
Affiliation:
Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, SP, Brazil. Center for Computational Engineering & Sciences (CCES), University of Campinas - UNICAMP, Campinas, SP, Brazil.
Pedro Alves da Silva Autreto
Affiliation:
Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, SP, Brazil. Federal University of ABC, Center of Natural Human Science, Santo Andre, SP, Brazil.
Douglas Soares Galvão
Affiliation:
Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, SP, Brazil. Center for Computational Engineering & Sciences (CCES), University of Campinas - UNICAMP, Campinas, SP, Brazil.
Get access

Abstract

The search for new ultra strong materials has been a very active research area. With relation to metals, a successful way to improve their strength is by the creation of a gradient of nanograins (GNG) inside the material. Recently, R. Thevamaran et al. [Science v354, 312-316 (2016)] propose a single step method based on high velocity impact of silver nanocubes to produce high-quality GNG. This method consists of producing high impact collisions of silver cubes at hypersonic velocity (∼400 m/s) against a rigid wall. Although they observed an improvement in the mechanical properties of the silver after the impact, the GNG creation and the strengthening mechanism at nanoscale remain unclear. In order to gain further insights about these mechanisms, we carried out fully atomistic molecular dynamics simulations (MD) to investigate the atomic conformations/rearrangements during and after high impact collisions of silver nanocubes at ultrasonic velocity. Our results indicate the co-existence of polycrystalline arrangements after the impact formed by core HCP domains surrounded by FCC ones, which could also contribute to explain the structural hardening.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McAllister, T. W., Ford, J. C., Ji, S., Beckwith, J. G., Flashman, L. A., Paulsen, K. and Greenwald, R. M., Ann. Biomed. Eng. 40, 127 (2012).Google Scholar
Uchic, M. D., Dimiduk, D. M., Florando, J. N. and Nix, W. D., Science 305, 986 (2004).Google Scholar
Greer, J. R. and De Hosson, J. T. M., Prog. Mater. Sci. 56, 654724 (2011).Google Scholar
Lu, K., Science 345, 1455 (2014).Google Scholar
Thevamaran, R., Lawal, O., Yazdi, S., Jeon, S.-J., Lee, J.-H. and Thomas, E. L., Science 354, 312 (2016).CrossRefGoogle Scholar
Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
Daw, M. S., Foiles, S. M. and Baskes, M. I., Mater. Sci. Rep. 9, 251 (1993).Google Scholar
Plimpton, S. J., J. Comput. Phys. 117, 1 (1995).Google Scholar
Shackelford, J. F., Introduction to Materials Science for Engineers, Pearson, London, 2015.Google Scholar
Ozden, S., Autreto, P. A. S., Tiwary, C. S., Khatiwada, S., Machado, L., Galvao, D. S., Vajtai, R., Barrera, E. V. and Ajayan, P. M., Nano Lett 14, 4131 (2014).Google Scholar
Machado, L. D., Ozden, S., Tiwary, C. S., Autreto, P. A. S., Vajtai, R., Barrera, E. V., Galvao, D. S. and Ajayan, P. M., Phys. Chem. Chem. Phys. 18, 14776 (2016).Google Scholar
Ozden, S., Machado, L. D., Tiwary, C. S., Autreto, P. A. S., Vajtai, R., Barrera, E. V., Galvao, D. S. and Ajayan, P. M., ACS Appl. Mater. Interfaces 8, 24819 (2016).Google Scholar
Zang, A. and Stephansson, O., Stress Field of the Earth’s Crust, Springer, Houten, 2009.Google Scholar
Hou, Z. Y., Dong, K. J., Tian, Z. A., Liu, R. S., Wang, Z. and Wang, J. G., Phys. Chem. Chem. Phys. 18, 17461 (2016).Google Scholar
Zhou, N., Li, D. and Yang, D., Nanoscale Res. Lett. 9, 302 (2014).Google Scholar
Oliveira, E. F., Autreto, P. A. S. and Galvao, D. S., to be published.Google Scholar