Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T03:00:13.106Z Has data issue: false hasContentIssue false

Selective area growth of InxGa1-xAs nanowires on HfO2 templates for highly scaled nMOS devices

Published online by Cambridge University Press:  06 February 2019

Paloma Tejedor*
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC. Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
Marcos Benedicto
Affiliation:
Universidad Pontificia Comillas ICAI-ICADE, Alberto Aguilera 23, 28015-Madrid, Spain.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The replacement of the strained Si channel in metal-oxide-semiconductor-field-effect-transistors (MOSFETs) with high electron mobility III-V compound semiconductors, particularly InGaAs, is being intensively investigated as an alternative to improve the drive current at low supply voltages in sub-10 nm CMOS applications. As device scaling continues, the reduction of the source and drain contact resistance becomes one of the most difficult challenges to fabricate highly scaled III-V-MOSFETs. In this article, we describe a self-aligned process based on selective molecular beam epitaxial regrowth of InxGa1-xAs (x=0-1) raised source/drain nanowire structures on etched recessed areas of a nanopatterned HfO2 template as a key element to integrate high mobility III-V materials with high-κ dielectrics in three-dimensional device architectures. The interaction of atomic H with the surface of the HfO2 nanopatterns has been investigated by using AFM, ToF-SIMS, and ARXPS. Selective growth has been observed for all values of x between 0 and 1. AFM results show that atomic H lowers the temperature process window for InxGa1-xAs selective growth. HRTEM images have revealed the conformality of the growth and the absence of nanotrench formation near the HfO2 mask edges. InxGa1-xAs alloys grown on H-treated HfO2 patterned substrates exhibit a higher uniformity in chemical composition and full strain relaxation for x≥0.5.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2019

References

Skotnicki, T., Hutchby, J.A., King, T., Wong, H.S.P., and Boeuf, F., IEEE Circuits Devices Mag. 1, 1626 (2005).CrossRefGoogle Scholar
del Alamo, J.A., Nature 479, 317 (2011).CrossRefGoogle Scholar
Jacob, A.P., Xie, R., Sung, M.G., Liebmann, L., Lee, R.T.P., and Taylor, B., International Journal of High Speed Electronics and Systems 26, 1740001 (2017).CrossRefGoogle Scholar
Tomioka, K., Motohisa, J., Hara, S., and Fukui, T., Nano Lett. 8, 10 3475-3480 (2008).CrossRefGoogle Scholar
Waldron, N., Merckling, C., Teugels, L., Ong, P., Sebaai, F., Barla, K., Collaert, N., and Thean, V.-Y., Solid-State Electron. 115, 81-91 (2016).CrossRefGoogle Scholar
Masudy-Panah, S., Wu, Y., Lei, D., Kumar, A., Yeo, Y.-C., and Gong, X., J. Appl. Phys. 123, 024508 (2018).CrossRefGoogle Scholar
Lee, R.T.P., Loh, W.Y., Tieckelmann, R., Orzali, T., Huffman, C., Vert, A., Huang, G., Kelman, M., Karim, Z., Hobbs, C., Hill, R.J.W., and Rao, S.S.P., ECS Trans. 66, 125-134 (2015).CrossRefGoogle Scholar
Veloso, A., De Keersgieter, A., Matagne, P., Horiguchi, N., and Collaert, N., Mater. Sci. Semicond. Process. 62, 2-12 (2017).CrossRefGoogle Scholar
Zhang, X., Guo, H.X., Zhu, Z., Gong, X., and Yeo, Y.C., Solid State Electron. 84, 8389 (2017).CrossRefGoogle Scholar
Kim, S.H., Yokoyama, M., Taoka, N., Iida, R., Lee, S., Nakane, R., Urabe, Y., Miyata, N., Yasuda, T., Yamada, H., et al. in Proceedings of the International Electron Devices Meeting (IEDM), (IEEE, San Francisco, CA, 2010) pp. 596599.Google Scholar
Czornomaz, L., El Kazzi, M., Hopstaken, M., Caimi, D., Mächler, P., Rossel, C., Bjoerk, M., Marchiori, C., Siegwart, H., and Fomperyne, J., Solid-State Electron. 74, 71-76 (2012).CrossRefGoogle Scholar
Ravaux, F., Saadat, I., and Jouiad, M., Crystals 7, 177 (2017).CrossRefGoogle Scholar
Jones, K.S., Lind, A.G., Hatem, C., Moffatt, S., and Ridgeway, M.C., ECS Trans. 53, 97105 (2013).CrossRefGoogle Scholar
O’Connell, J., Napolitani, E., Impellizzeri, G., Glynn, C., McGlacken, G.P., O’Dwyer, C., Duffy, R., and Holmes, J.D., ACS Omega, 2, 17501759 (2017).CrossRefGoogle Scholar
Burek, G.J., Wistey, M.A., Singuisetti, U., Nelson, A., Thibeault, B.J., Bank, S.R., Rodwell, M.J.W., and Gossard, A.C., J. Crys. Growth 311, 1984-1987 (2009).CrossRefGoogle Scholar
Diez-Merino, L. and Tejedor, P., J. Appl. Phys. 110, 013106 (2011).CrossRefGoogle Scholar