Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T15:14:21.823Z Has data issue: false hasContentIssue false

Quantum Dots as Photocatalysts for Bicarbonate Reduction to Solar Fuels: Formate Production from CuS, CuInS2, and CuInS2/ZnS

Published online by Cambridge University Press:  28 December 2018

Hanqing Pan
Affiliation:
Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
Ruwini Rajapaksha
Affiliation:
Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
Michael D. Heagy*
Affiliation:
Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
Get access

Abstract

In this study, non-cadmium-based quantum dots were synthesized and used as catalysts for the photochemical reduction of bicarbonate to value-added formic acid. Three types of quantum dots (CuS, CuInS2, and CuInS2/ZnS) were chosen because of they feature environmentally benign properties, possess wide optical absorption, and exhibit excellent photocatalytic activity. All three photocatalysts exhibited excellent efficiency in the photo-reduction of bicarbonate to formic acid, with CuInS2/ZnS showing the highest photon to formate conversion efficiency of 6.07 ± 0.07%. We attribute these exceptional results to their smaller bandgap leading to enhanced visible light absorption and the application of an appropriate hole scavenger that prolongs photo-generated charge carrier separation. To the best of our knowledge, the application of quantum dots in photocatalysis is still quite limited; this report describes the highest apparent quantum efficiency (AQE) to date.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chaudhary, G. R.; Bansal, P.; Mehta, S. K., Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chemical Engineering Journal 2014, 243, 217224.CrossRefGoogle Scholar
Yin, L.; Bai, Y.; Zhou, J.; Cao, J.; Sun, X.; Zhang, J., The thermal stability performances of the color rendering index of white light emitting diodes with the red quantum dots encapsulation. Optical Materials 2015, 42, 187192.CrossRefGoogle Scholar
Chung, W.; Park, K.; Yu, H. J.; Kim, J.; Chun, B.-H.; Kim, S. H., White emission using mixtures of CdSe quantum dots and PMMA as a phosphor. Optical Materials 2010, 32 (4), 515521.CrossRefGoogle Scholar
Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 2008, 130 (49), 1677016777.CrossRefGoogle Scholar
Nanu, M.; Schoonman, J.; Goossens, A., Nanocomposite Three-Dimensional Solar Cells Obtained by Chemical Spray Deposition. Nano Letters 2005, 5 (9), 17161719.CrossRefGoogle ScholarPubMed
Somers, R. C.; Bawendi, M. G.; Nocera, D. G., CdSe nanocrystal based chem-/bio- sensors. Chemical Society Reviews 2007, 36 (4), 579591.CrossRefGoogle ScholarPubMed
Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature materials 2010, 9, 676.CrossRefGoogle ScholarPubMed
Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews 2008, 60 (11), 12261240.CrossRefGoogle ScholarPubMed
Chuang, P.-H.; Lin, C. C.; Liu, R.-S., Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index. ACS applied materials & interfaces 2014, 6 (17), 1537915387.CrossRefGoogle ScholarPubMed
Wang, X.; Liang, Z.; Xu, X.; Wang, N.; Fang, J.; Wang, J.; Xu, G., A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime. Journal of Alloys and Compounds 2015, 640, 134140.CrossRefGoogle Scholar
Michalska, M.; Aboulaich, A.; Medjahdi, G.; Mahiou, R.; Jurga, S.; Schneider, R., Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots. Journal of Alloys and Compounds 2015, 645, 184192.CrossRefGoogle Scholar
Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M., CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. Journal of Materials Chemistry 2010, 20 (35), 75707578.CrossRefGoogle Scholar
Pan, H.; Chowdhury, S.; Premachandra, D.; Olguin, S.; Heagy, M. D., Semiconductor Photocatalysis of Bicarbonate to Solar Fuels: Formate Production from Copper(I) Oxide. ACS Sustainable Chemistry & Engineering 2017.Google Scholar
Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103 (43), 1572915735.CrossRefGoogle ScholarPubMed
Ma, J.; Liu, M.; Li, Z.; Li, L., Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots. Optical Materials 2015, 47, 5661.CrossRefGoogle Scholar
Supplementary material: File

Pan et al. supplementary material

Pan et al. supplementary material 1

Download Pan et al. supplementary material(File)
File 398 KB