Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T16:57:02.623Z Has data issue: false hasContentIssue false

Quantum Dots and Quantum Wires Contribution on Photoluminescent Properties of Nanostructured Oxidized Silicon

Published online by Cambridge University Press:  27 March 2017

C. Vargas
Affiliation:
Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica Escuela de Física, Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica
T. Ramírez-Cortés*
Affiliation:
Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica Escuela de Física, Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica
K. Cordero-Solano
Affiliation:
Escuela de Física, Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica
A. Ramírez-Porras
Affiliation:
Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica Escuela de Física, Universidad de Costa Rica, San Pedro 11501, San José, Costa Rica
Get access

Abstract

Stability of functional devices such as light-emitting devices and chemical or biological sensors is an important issue nowadays. Nanostructured silicon made using top-down methodologies is being employed as a material to develop such systems, but surface stability to external ambient conditions is still an open question. One of those important conditions is oxidation. Although there exist models accounting for the role of oxide layers on semiconductor systems, experimental data is still required to provide further useful information. In this paper, we perform oxidation processes to light-emitting nanostructured silicon and study the contribution of quantum dots and quantum wires to photoluminescence as surface oxidation evolves. Cross-correlations with infrared spectroscopy are also included.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 10461048 (1990).Google Scholar
Baratto, C., Faglia, G., Sberveglieri, G., Gaburro, Z., Pancheri, L., Oton, C., and Pavesi, L. Multiparametric Porous Silicon Sensors. Sensors 2, 121126 (2002).CrossRefGoogle Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 1932 (2014).CrossRefGoogle ScholarPubMed
Harraz, F. A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuators B Chem. 202, 897912 (2014).Google Scholar
Lockwood, D. J. Light emission in silicon nanostructures. J. Mater. Sci. Mater. Electron. 20, 235244 (2008).CrossRefGoogle Scholar
Ramı́rez-Porras, A., and Weisz, S. Z. Stochastic approach to the smart quantum confinement model in porous silicon. Surf. Sci. 515, L509L513 (2002).Google Scholar
Ramírez-Porras, A., García, O., Vargas, C., Corrales, A., and Solís, J. D. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states. Appl. Surf. Sci. 347, 471474 (2015).Google Scholar
Vargas, C., Corrales, A., Ramírez-Cortés, T., and Ramírez-Porras, A. Study of oxidation effect on the photoluminescence in p-type nanostructured silicon. Phys. Status Solidi C 12, 13831386 (2015).CrossRefGoogle Scholar
Dattilo, D., Armelao, L., Maggini, M., Fois, G., and Mistura, G. Wetting Behavior of Porous Silicon Surfaces Functionalized with a Fulleropyrrolidine. Langmuir 22, 87648769 (2006).Google Scholar
Balucani, M., Bolognesi, G., Casciola, C.M., Chinappi, M., Giacomello, A., and Nenzi, P. Superhydrophobic porous silicon surfaces in Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo 2, 493496 (2011).Google Scholar
Cao, L., Price, T. P., Weiss, M., and Gao, D. Super Water- and Oil-Repellent Surfaces on Intrinsically Hydrophilic and Oleophilic Porous Silicon Films. Langmuir 24, 16401643 (2008).CrossRefGoogle ScholarPubMed
Caras, C. A., Reynard, J. M., and Bright, F. V. An In-Depth Study Linking the Infrared Spectroscopy and Photoluminescence of Porous Silicon During Ambient Hydrogen Peroxide Oxidation. Appl. Spectrosc. 67, 570577 (2013).Google Scholar
Karakassides, M. A., Gournis, D., and Petridis, D. An Infrared Reflectance Study of Si-O Vibrations in Thermally Treated Alkali-Saturated Montmorillonites. Clay Miner. 34, 429438 (1999).Google Scholar
Bisi, O., Ossicini, S., and Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1126 (2000).Google Scholar