Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T06:20:19.643Z Has data issue: false hasContentIssue false

Preparation and Structural Analysis of Magnesium Oxide Aerogels

Published online by Cambridge University Press:  15 May 2017

Jiankai Zhang
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Xiaohong Chen*
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Ran Liu
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Huaihe Song
Affiliation:
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Zhihong Li
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Get access

Abstract

Magnesium oxide aerogels were made by sol-gel process using magnesium methoxide as precursor, methanol and deionized water as solvent with ethanol supercritical fluid drying. The influences of the different factors on the gel time and the specific surface area of magnesium oxide aerogels were studied, and the structure and morphology were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD), and the Small Angle X-ray Scatter (SAXS) was utilized to determine the fractural structure of the magnesium oxide aerogels. The results show that MgO aerogels belong to the typical mesoporous materials with rich network and highly developed pore structure, and the specific surface area is 904.9 m2/g, the apparent density is 0.055 g/cm3, the average pore size is 19.6 nm. The results of SAXS analysis show that the fractal dimension of the MgO aerogels is 2.32 in high q area which proves the existence of rough surface and pore fractal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kistler, S. S., Nature 127 (3211), 741741 (1931).Google Scholar
Pierre, A. C. and Pajonk, G. M., Chemical Reviews 102 (11), 42434266 (2002).Google Scholar
Soleimani Dorcheh, A. and Abbasi, M. H., Journal of Materials Processing Technology 199 (1–3), 1026 (2008).CrossRefGoogle Scholar
Du, A., Zhou, B., Zhang, Z. and Shen, J., Materials 6 (3), 941968 (2013).Google Scholar
Geis, S., Löbmann, P. and Fricke, J., Journal of Non-Crystalline Solids 225, 226229 (1998).Google Scholar
Lours, T., Zarycki, J., Craievich, A. F., Aegerter, M. A. and Dos Santos, D. I., Journal of Non-Crystalline Solids 106 (1), 157160 (1988).Google Scholar
Tamon, H. and Ishizaka, H., Journal of Colloid and Interface Science 206 (2), 577582 (1998).Google Scholar
Wang, J., Shen, J., Zhou, B. and Wu, X., Nanostructured Materials 7 (6), 699708 (1996).Google Scholar
Tsou, P., Journal of Non-Crystalline Solids 186, 415427 (1995).CrossRefGoogle Scholar
Yang, J., Zhang, E., Li, X., Zhang, Y., Qu, J. and Yu, Z.-Z., Carbon 98, 5057 (2016).Google Scholar
Tabrizi, N. S. and Zamani, S., Water Science & Technology 74 (1), 256 (2016).Google Scholar
Rotter, H., Landau, M. V., Carrera, M., Goldfarb, D. and Herskowitz, M., Applied Catalysis B: Environmental 47 (2), 111126 (2004).Google Scholar
Janosovits, U., Ziegler, G., Scharf, U. and Wokaun, A., Journal of Non-Crystalline Solids 210 (1), 113 (1997).Google Scholar
Bandara, J., Kiwi, J., Pulgarin, C. and Pajonk, G., Journal of Molecular Catalysis A: Chemical 111 (3), 333339 (1996).Google Scholar
Chen, B., Wang, X., Zhang, S., Wei, C. and Zhang, L., Journal of Porous Materials 21 (6), 10351039 (2014).Google Scholar
Gash, A. E., Tillotson, T. M., Satcher, J. H., Poco, J. F., Hrubesh, L. W. and Simpson, R. L., Chemistry of Materials 13 (3), 9991007 (2001).Google Scholar
Ward, D. A. and Ko, E. I., Chemistry of Materials 5 (7), 956969 (1993).Google Scholar
Xu, K., Zhu, X., She, P., Shang, Y., Sun, H. and Liu, Z., Inorganic Chemistry Frontiers 3 (8), 10431047 (2016).Google Scholar
Tang, J., Du, A., Xu, W., Liu, G., Zhang, Z., Shen, J. and Zhou, B., Journal of Sol-Gel Science and Technology 68 (1), 102109 (2013).Google Scholar
Domínguez, G., Phillips, M. L. F., Jones, S. M. and Westphal, A. J., Journal of Non-Crystalline Solids 350, 385390 (2004).Google Scholar
Einarsrud, M. A., Pedersen, S., Larsen, E. and Grande, T., Journal of the European Ceramic Society 19 (3), 389397 (1999).Google Scholar
Goto, M., Machino, Y. and Hirose, T., Microporous Materials 7 (1), 4149 (1996).Google Scholar
Grandi, S. and Costa, L., Journal of Non-Crystalline Solids 225, 141145 (1998).CrossRefGoogle Scholar
Suh, D. J., Journal of Non-Crystalline Solids 350, 314319 (2004).Google Scholar
Zu, G., Shen, J., Zou, L., Zou, W., Guan, D., Wu, Y. and Zhang, Y., Microporous and Mesoporous Materials 238, 9096 (2017).CrossRefGoogle Scholar
Li, F., Li, H., Wang, L., He, P. and Cao, Y., Catalysis Science & Technology 5 (2), 10211034 (2015).Google Scholar
Naeimi, H. and Alishahi, N., Journal of Experimental Nanoscience 10 (3), 222234 (2015).Google Scholar
Reddy, P. V., Annapurna, M., Srinivas, P., Likhar, P. R. and Lakshmi Kantam, M., New Journal of Chemistry 39 (5), 33993404 (2015).Google Scholar
Devaraja, P. B., Avadhani, D. N., Nagabhushana, H., Prashantha, S. C., Sharma, S. C., Nagabhushana, B. M., Nagaswarupa, H. P. and Daruka Prasad, B., Materials Characterization 97, 2736 (2014).Google Scholar
Devaraja, P. B., Avadhani, D. N., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagabhushana, B. M., Nagaswarupa, H. P. and Premkumar, H. B., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121, 4652 (2014).Google Scholar
Devaraja, P. B., Nagabhushana, H., Sharma, S. C., Naik, R., Prashantha, S. C., Nagaswarupa, H. P., Anantharaju, K. S., Premkumar, H. B. and Jnaneshwara, D. M., Displays 41, 1624 (2016).Google Scholar
Dong, W., Yen, S.-P., Paik, J.-A. and Sakamoto, J., Journal of the American Ceramic Society 92 (5), 10111016 (2009).Google Scholar
Feinle, A., Heugenhauser, A. and Hüsing, N., The Journal of Supercritical Fluids 106, 133139 (2015).CrossRefGoogle Scholar
Nur, H., Misnon, I. I. and Hamdan, H., Catalysis Letters 130 (1), 161168 (2009).Google Scholar
Crist, B., Chemical Engineering Communications 22 (5-6), 377378 (1983).Google Scholar
Porod, G., Colloid and Polymer Science 124 (1), 83114 (1953).Google Scholar
Baird, N. J. and Ferréd’Amaré, A. R., Methods in molecular biology (Clifton, N.J.) 1103, 211225 (2014).Google Scholar