Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T02:30:52.399Z Has data issue: false hasContentIssue false

Polycaprolactone based membranes for the degradation of diclofenac present in water samples using ZnO nanoparticles as the active agent

Published online by Cambridge University Press:  25 November 2020

Marco Antonio Juárez Sánchez
Affiliation:
National School of Biological Sciences, National Polytechnic Institute, Santo Tomas, CDMX, Mexico
Miguel Ángel Meléndez Lira*
Affiliation:
Physics department, Center for Research and Advanced Studies, Zacatenco, CDMX, Mexico
Celestino Odín Rodríguez Nava
Affiliation:
National School of Biological Sciences, National Polytechnic Institute, Santo Tomas, CDMX, Mexico
*
*corresponding author
Get access

Abstract

Drug contamination in water is one of the current fields of study. Since 1990, the presence of drugs in drinking water has been a concern to scientists and public. In Mexico, these organic compounds are not efficiently removed in wastewater treatment plants; therefore, alternative methodologies have been studied that allow these compounds to have a high percentage of degradation or be completely degraded. One example of these techniques is heterogeneous photocatalysis which has obtained positive results in the degradation of drugs using ZnO nanoparticles. These are commonly selected for their electrical characteristics, even though they disperse in water and an additional unit operation is required to separate them from the liquid medium. To eliminate drugs with nano particles in a single stage, polycaprolactone-based membranes with adhered ZnO nanoparticles, by means of electrospinning, were prepared to degrade drugs such as diclofenac. The technique used has shown to efficiently break down diclofenac in 4 hours according to the capillary electrophoresis readings.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pérez, J.A. (2017). Fármacos como contaminantes emergentes: caracterización, cuantificación y eliminación en plantas de tratamiento de aguas residuales. Universidad de Oviedo. Tesis Doctoral.Google Scholar
Kümmerer, K., Hempel, M., (2010). Green and Sustainable Pharmacy.3er ed. Germany: Springer; p.1-315CrossRefGoogle Scholar
Sousa, M.A., Gonçalves, C., Vilar, J.P., Boaventura, A.R. y Alpendurada, M.F. (2012). Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chemical Engineering Journal. Vol. 198–199 (2012) 301309CrossRefGoogle Scholar
Carbajo, J. (2013). Aplicación de la fotocatálisis solar a la degradación de contaminantes orgánicos en fase acuosa con catalizadores nanoestructurados de TiO2. (Tesis doctoral). Universidad Autónoma de Madrid. Madrid, EspañaPrieto L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E.M., Malato, S., (2013). Water Research 47, pp. 1521-1528.Google Scholar
Panthi, G., Park, M., Kim, H., Lee, S. y Park, S. (2014). Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: A review. Journal of Industrial and Engineering Chemistry. Pp. 2635.Google Scholar
Lin, D., Wu, H., Zhang, R., Zhang, W., Pan, W., Am, J.. Ceram. Soc. 93 (2010) 3384.CrossRefGoogle Scholar
Prieto L., Oller, Klamerth, I., Agüera, N., Rodríguez, A., Malato, S. E.M., (2013). Water Research 47, pp. 1521-1528.CrossRefGoogle Scholar
Chew, S.Y., Wen, Y., Dzenis, Y., Leong, K.W., (2006). “The Role of Electrospinning in the Emerging Field of NanomedicineCurr Pharm Des, 12, 4751.CrossRefGoogle ScholarPubMed
Potrc, T., Baumgartner, S., Roškar, R., Planinšek, O., Lavric, Z., Kristl, J. y Kocbek, P. (2015). Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. European Journal of Pharmaceutical Sciences. 75. Pp. 101113.CrossRefGoogle ScholarPubMed
Aguilar-Costumbre, Y., Lambert, J. A., Meléndez-Lira, M. A., & Escobar-Barrios, V. A. (2017). Preparation of membranes based on polysulfone (PSU) and graphene oxide (GrO) by electrospinning. In Membranes (pp. 23-30). Springer, Cham.Google Scholar
Luna-Arredondo, E. J., Maldonado, A., Asomoza, R., Acosta, D. R., Meléndez-Lira, M. A., & Olvera, M. D. L. L. (2005). Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films, 490(2), 132136. https://doi.org/10.1016/j.tsf.2005.04.043CrossRefGoogle Scholar
Homaeigohar, S. y Elbahri, M. (2014). Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials. 7, 1017-1045. doi:10.3390/ma7021017CrossRefGoogle ScholarPubMed
Rodríguez-Nava, O., Ramírez-Saad, H., Loera, O., & González, I. (2016). Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system. Environmental Technology (United Kingdom), 37 (23), 29642974. https://doi.org/10.1080/09593330.2016.1172669Google ScholarPubMed
Silambarasan, M., Saravanan, S., Soga, T., (2015). Raman and Photoluminescence Studies of Ag and Fe-doped ZnO Nanoparticles. International Journal of ChemTech Research. Vol.7, No.3, pp 1644-1650. ISSN: 0974-4290.Google Scholar
Fernández, P., (2003). Propiedades coloidales de partículas de óxido de titanio: aplicación al tratamiento fotocatalítico solar de aguas. Tesis doctoral de la Universidad de Granada.Google Scholar
Montesinos, A., Rojas, M., Orantes, C., Escobar, D., Guillén, H., Rodríguez, C., Enríquez, A., (2015). Sistema biológico-humedal para eliminar contaminantes emergentes en aguas residuales tratadas. Asociación Mexicana de Ingeniería, Ciencia y Gestión Ambiental.Google Scholar
Apopei, P., Orha, C., Popescu, M. I., Lazau, C., Manea, F., Catrinescu, C., & Teodosiu, C. (2020). Diclofenac removal from water by photocatalysis- assisted filtration using activated carbon modified with N-doped TiO2. Process Safety and Environmental Protection, 138, 324336. https://doi.org/10.1016/j.psep.2020.03.012CrossRefGoogle Scholar