Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T04:01:47.124Z Has data issue: false hasContentIssue false

Plasticity in inhomogeneously strained Au nanowires studied by Laue microdiffraction

Published online by Cambridge University Press:  28 May 2018

Z. Ren
Affiliation:
Aix Marseille Univ, Univ de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
T.W. Cornelius*
Affiliation:
Aix Marseille Univ, Univ de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
C. Leclere
Affiliation:
Aix Marseille Univ, Univ de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
A. Davydok
Affiliation:
Aix Marseille Univ, Univ de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
J. -S. Micha
Affiliation:
CRG-IF BM32 Beamline, European Synchrotron (ESRF), CS40220, 38043 Grenoble Cedex 9, France Université Grenoble Alpes, CEA/INAC, UMR CNRS SPrAM, 17 rue des Martyrs, 38054 Grenoble, France
O. Robach
Affiliation:
CRG-IF BM32 Beamline, European Synchrotron (ESRF), CS40220, 38043 Grenoble Cedex 9, France Université Grenoble Alpes, CEA/INAC/MEM, 17 rue des Martyrs, 38054 Grenoble, France
G. Richter
Affiliation:
Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
O. Thomas
Affiliation:
Aix Marseille Univ, Univ de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
Get access

Abstract

Plasticity in as-grown gold nanowires deformed in three-point bending configuration was studied by Laue microdiffraction. One-dimensional orientation maps of the Au crystal along the nanowire were generated from which the deformation profile was inferred. The crystal lattice was found to rotate continuously around the Au $[\bar{2}11]$ direction, which is transverse to the wire axis evidencing the storage of geometrically necessary dislocations (GNDs). The analysis of the diffraction peak shape points to the activation of multiple slip systems in contrast to the formation of wedge shaped twins predicted by MD simulations.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uchic, M.D., et al., Sample Dimensions Influence Strength and Crystal Plasticity. Science, 2004. 305(5686): p. 986989.CrossRefGoogle ScholarPubMed
Brenner, S.S., Tensile strength of whiskers, J. Appl. Phys. (1956) 27, p. 14841491CrossRefGoogle Scholar
Herring, C. and Galt, J.K., Elastic and Plastic Properties of Very Small Metal Specimens. Physical Review, 1952. 85(6): p. 10601061.CrossRefGoogle Scholar
Richter, G., Hillerich, K., Gianola, D.S., Monig, R., Kraft, O., Volkert, C.A., Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Letters, 2009. 9(8): p. 30483052.CrossRefGoogle ScholarPubMed
Oh, S.H., Legros, M. Kiener, D., Dehm, G., In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater, 2009. 8(2): p. 95100.CrossRefGoogle Scholar
Lee, S., Im, J., Yoo, Y., Bitzek, E., Kiener, D., Richter, G., Kim, B., Oh, S.H., Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM. Nat Commun, 2014, 5.Google ScholarPubMed
Roos, B., Kapelle, B., Richter, G., Volkert, C.A., Surface dislocation nucleation controlled deformation of Au nanowires. Applied Physics Letters, 2014. 105(20): p. 201908.CrossRefGoogle Scholar
Sedlmayr, A., Bitzek, E., Gianola, D.S., Richter, G., Mönig, R., Kraft, O., Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Materialia, 2012. 60(9): p. 39853993CrossRefGoogle Scholar
Demir, E. and Raabe, D., Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending. Acta Materialia, 2010. 58(18): p. 60556063.CrossRefGoogle Scholar
Demir, E., Raabe, D., and Roters, F., The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending. Acta Materialia, 2010. 58(5): p. 18761886.CrossRefGoogle Scholar
Demir, E., Roters, F., and Raabe, D., Bending of single crystal microcantilever beams of cube orientation: Finite element model and experiments. Journal of the Mechanics and Physics of Solids, 2010. 58(10): p. 15991612.CrossRefGoogle Scholar
Gong, J., Birtton, T.B., Cuddihy, M.A., Dunne, F.P.E., Wilkinson, A.J.,〈a〉 Prismatic, 〈a〉 basal, and 〈c+a〉 slip strengths of commercially pure Zr by micro-cantilever tests. Acta Materialia, 2015. 96: p. 249257.CrossRefGoogle Scholar
Kiener, D., Motz, C., Grosinger, W., Weygand, D., Pippan, R., Cyclic response of copper single crystal micro-beams. Scripta Materialia, 2010. 63(5): p. 500503.CrossRefGoogle Scholar
Kirchlechner, C., Grosinger, W., Kapp, M.W., Imrich, P.J., Micha, J.-S., Ulrich, O., Keckes, J., Dehm, G., Motz, C., Investigation of reversible plasticity in a micron-sized, single crystalline copper bending beam by X-ray μLaue diffraction. Philosophical Magazine, 2012. 92(25-27): p. 32313242.CrossRefGoogle Scholar
Konijnenberg, P.J., Zaefferer, S., and Raabe, D., Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Materialia, 2015. 99: p. 402414.CrossRefGoogle Scholar
Motz, C., Schoberl, T., and Pippan, R., Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Materialia, 2005. 53(15): 42694279.CrossRefGoogle Scholar
Leclere, C., Cornelius, T.W., Ren, Z., Robach, O., Micha, J.-S., Davydok, A., Ulrich, O., Richter, G., Thomas, O., In situ bending of an Au nanowire monitored by micro Laue diffraction. Journal of Applied Crystallography, 2015. 48(1): p. 291296.CrossRefGoogle ScholarPubMed
Leclere, C., Cornelius, T.W., Ren, Z., Davydok, A., Micha, J.-S., Robach, O., Richter, G., Belliard, L., Thomas, O., KB scanning of X-ray beam for Laue microdiffraction on accelerophobic sample. Journal of Synchrotron Radiation, 2016. 23(6): p. 13951400.CrossRefGoogle Scholar
Ren, Z., Mastropietro, F., Davydok, A., Langlais, S., Richard, M.-I., Furter, J.-J., Thomas, O., Dupraz, M., Verdier, M., Beutier, G., Boesecke, P., Cornelius, T.W., Scanning force microscope for in situ nanofocused X-ray diffraction studies. Journal of Synchrotron Radiation, 2014. 21(5): p. 11281133.CrossRefGoogle ScholarPubMed
Ulrich, O., Biquard, X., Bleuet, P., Geaymond, O., Gergaud, P., Micha, J.-S., Robach, O., Rieutord, F., A new white beam x-ray microdiffraction setup on the BM32 beamline at the European Synchrotron Radiation Facility, Rev. Sci. Instrum. 82 (2011) 033908CrossRefGoogle ScholarPubMed
Fleck, N.A., et al., Strain gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia, 1994. 42(2): p. 475487.CrossRefGoogle Scholar
Gao, H., et al., Mechanism-based strain gradient plasticity— I. Theory. Journal of the Mechanics and Physics of Solids, 1999. 47(6): p. 12391263.CrossRefGoogle Scholar
Nohring, W.G., Moller, J.J., Xie, Z., Bitzek, E., Wedge-shaped twins and pseudoelasticity in fcc metallic nanowires under bending. Extreme Mechanics Letters.Google Scholar
Zheng, Y.G., Zhang, H.W., Chen, Z., Wang, L., Zhang, Z.Q., Wang, J.B., Formation of two conjoint fivefold deformation twins in copper nanowires with molecular dynamics simulation. Applied Physics Letters, 2008. 92(4): p. 041913.CrossRefGoogle Scholar
Ren, Z., Cornelius, T.W., Leclere, C., Davydok, A., Micha, J.-S., Robach, O., Ullrich, O., Richter, G., Thomas, O., Three-point bending behavior of Au nanowires studied by in situ Laue microdiffraction, submittedGoogle Scholar