Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T16:06:34.438Z Has data issue: false hasContentIssue false

Parameter optimization of aluminum alloy thin structures obtained by Selective Laser Melting

Published online by Cambridge University Press:  18 November 2019

Malena Ley Bun Leal
Affiliation:
Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Mexico. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Mexico.
Barbara Bermudez-Reyes
Affiliation:
Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Mexico. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Mexico.
Patricia del Carmen Zambrano Robledo
Affiliation:
Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Mexico. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Centro de Investigación e Innovación en Ingeniería Aeronáutica, Mexico.
Omar Lopez-Botello*
Affiliation:
Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Mexico. Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Mexico.
*
Get access

Abstract

Selective Laser Melting (SLM) involves numerous fabrication parameters, the interaction between those parameters determine the final characteristics of the resulting part and because of the latter, it is considered a complex process. Low-density components is one of the main issues of the SLM process, due to the incorrect selection of process parameters. These defects are undesired in high specialized applications (i.e. aerospace, aeronautic and medical industries). Therefore, the characterization of the defects (pores) found in aluminum parts manufacture by SLM and the relationship with fabrication parameters was performed. A robust orthogonal design of experiments was implemented to determine process parameters, and then parts were manufactured in SLM. Relative density of the samples was then characterized using the Archimedes principle and microscopy; the data was then statistically analyzed in order to determine the optimal process parameters. The main purpose of the present research was to establish the best processing parameters of an in-house SLM system, as well as to characterize the pore geometry in order to fully eliminate pores in a future research.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boschetto, A., Bottini, L., Eugeni, M., Cardini, V., Nisi, G.G., Veniali, F., Gaudenzi, P., Selective Laser Melting of a 1U CubeSat structure. Design for Additive Manufacturing and assembly, Acta Astronaut. 159 (2019) 377384.CrossRefGoogle Scholar
Martin, A.A., Calta, N.P., Khairallah, S.A., Wang, J., Depond, P.J., Fong, A.Y., Thampy, V., Guss, G.M., Kiss, A.M., Stone, K.H., Tassone, C.J., Nelson Weker, J., Toney, M.F., van Buuren, T., Matthews, M.J., Dynamics of pore formation during laser powder bed fusion additive manufacturing, Nat. Commun. 10 (2019). doi:https://doi.org/10.1038/s41467-019-10009-2.CrossRefGoogle ScholarPubMed
Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C., Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf. 1–4 (2014) 7786. doi:https://doi.org/10.1016/j.addma.2014.08.001.CrossRefGoogle Scholar
Maamoun, A.H., Xue, Y.F., Elbestawi, M.A., Veldhuis, S.C., Effect of SLM Process Parameters on the Quality of Al Alloy Parts; Part I: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy, Preprints, 2018.CrossRefGoogle Scholar
Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.P., Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, in: Solid Free. Fabr. Symp., 2011: pp. 484495.Google Scholar
Galy, C., Le Guen, E., Lacoste, E., Arvieu, C., Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences, Addit. Manuf. (2018). doi:https://doi.org/10.1016/j.addma.2018.05.005.CrossRefGoogle Scholar
Montgomery, D., Análisis y diseño de experimentos, Grupo Editor. Iberoam. (2005) 467.Google Scholar
Pulido, H.G., De la Vara Salazar, R., González, P.G., Martínez, C.T., Pérez, M. del C.T., Análisis y diseño de experimentos, McGraw-Hill New York, NY, USA:, 2012.Google Scholar
Zavala-Arredondo, M., London, T., Allen, M., Maccio, T., Ward, S., Griffiths, D., Allison, A., Goodwin, P., Hauser, C., Use of power factor and specific point energy as design parameters in laser powder-bed-fusion (L-PBF) of AlSi10Mg alloy, Mat. & Des. (2019), doi:https://doi.org/10.1016/j.matdes.2019.108018.CrossRefGoogle Scholar
Calignano, F., Cattano, G., Manfredi, D., Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters, Journal of Mat. Pro. Tech. (2018), pp. 773-783, doi:https://doi.org/10.1016/j.jmatprotec.2018.01.029.CrossRefGoogle Scholar
Wang, P., Lei, H., Zhu, X., Chen, H., Fang, D., Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting, Journal of Alloys and Comp. (2019), pp. 852-859, doi:https://doi.org/10.1016/j.jallcom.2019.03.135.Google Scholar
Wang, Q.G., Jones, P.E., Prediction of Fatigue Performance in Aluminum Shape Castings Containing Defects, Metall. Mater. Trans. B. 38 (2007) 615621. doi:https://doi.org/10.1007/s11663-007-9051-4.CrossRefGoogle Scholar
Wang, Q.G., Crepeau, P.N., Davidson, C.J., Griffiths, J.R., Oxide films, pores and the fatigue lives of cast aluminum alloys, Metall. Mater. Trans. B. 37 (2006) 887895. doi:https://doi.org/10.1007/BF02735010.CrossRefGoogle Scholar