Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T20:52:56.387Z Has data issue: false hasContentIssue false

Optimization of Chemical Vapor Deposition Process for Carbon Nanotubes Growth on Stainless Steel: Towards Efficient Hydrogen Evolution Reaction

Published online by Cambridge University Press:  09 January 2020

Haojie Zhang
Affiliation:
Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany.
Juliana Martins de Souza e Silva
Affiliation:
Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany.
Cristine Santos de Oliveira
Affiliation:
Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany.
Xubin Lu
Affiliation:
Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
Stefan L. Schweizer
Affiliation:
Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany.
A. Wouter Maijenburg
Affiliation:
Centre for Innovation Competence SiLi-nano®, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale), Germany
Michael Bron*
Affiliation:
Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
Ralf B. Wehrspohn*
Affiliation:
Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany. Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Straße 1, Halle (Saale), Germany.
Get access

Abstract

We report a novel strategy to render stainless steel (SS) a more versatile material that is suitable to be used as the substrate for preparing electrodes for efficient hydrogen evolution by interface engineering. Our strategy involves the growth of carbon nanotubes (CNTs) by atmospheric pressure chemical vapor deposition (APCVD) as the interface material on the surface of SS. We optimized the procedure to prepare CNTs/SS and demonstrate a higher activity of the CNTs/SS prepared at 700 °C for the hydrogen evolution reaction (HER) when compared to samples prepared at other temperatures. This can be attributed to the higher number of defects and the higher content of pyrrolic N obtained at this temperature. Our strategy offers a new approach to employ SS as a substrate for the preparation of highly efficient electrodes and has the potential to be widely used in electrochemistry.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Schäfer, H. and Chatenet, M., ACS Energy Lett . 3, 574 (2018).CrossRefGoogle Scholar
Schafer, H., Beladi-Mousavi, S. M., Walder, L., Wollschlager, J., Kuschel, O., Ichilmann, S., Sadaf, S., Steinhart, M., Kupper, K., and Schneider, L., ACS Catal . 5, 2671 (2015).CrossRefGoogle Scholar
Schäfer, H., Chevrier, D. M., Zhang, P., Stangl, J., Müller-Buschbaum, K., Hardege, J. D., Kuepper, K., Wollschläger, J., Krupp, U., Dühnen, S., Steinhart, M., Walder, L., Sadaf, S., and Schmidt, M., Adv. Funct. Mater. 26, 6402 (2016).CrossRefGoogle Scholar
Chen, J. S., Ren, J., Shalom, M., Fellinger, T., and Antonietti, M., ACS Appl. Mater. Interfaces 8, 5509 (2016).CrossRefGoogle ScholarPubMed
Ring, L., Pollet, B. G., Chatenet, M., Abbou, S., Küpper, K., Schmidt, M., Huck, M., Gries, A., Steinhart, M., Schäfer, H., Angew.Chem.Int.Ed. 58, 17383 (2019).CrossRefGoogle Scholar
Zhang, H., de Souza e Silva, J. M., Lu, X., de Oliveira, C. S., Cui, B., Li, X., Lin, C., Schweizer, S. L., Maijenburg, A. W., Bron, M., and Wehrspohn, R. B., Adv. Mater. Interfaces 6, 1900774 (2019).CrossRefGoogle Scholar
Gohier, A., Ewels, C. P., Minea, T. M., and Djouadi, M. A., Carbon 46, 1331 (2008).CrossRefGoogle Scholar
Zhang, X., Zhang, J., Quan, J., Wang, N., and Zhu, Y., Analyst 141, 5527 (2016).CrossRefGoogle Scholar
Wang, H., Robinson, J. T., Li, X., and Dai, H., J. Am. Chem. Soc. 131, 9910 (2009).CrossRefGoogle Scholar
Dong, H., Liu, C., Ye, H., Hu, L., Fugetsu, B., Dai, W., Cao, Y., Qi, X., Lu, H., and Zhang, X., Sci. Rep. 5, 17542 (2015).CrossRefGoogle Scholar