Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T02:49:35.556Z Has data issue: false hasContentIssue false

Non-covalent Tough Hydrogels for Functional Actuators

Published online by Cambridge University Press:  10 December 2015

Jun Fu*
Affiliation:
Polymers and Composites Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
Guorong Gao
Affiliation:
Polymers and Composites Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
Yuanna Sun
Affiliation:
Polymers and Composites Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
*
Get access

Abstract

Tough and responsive hydrogels have recently attracted great research interests for potential applications in artifical muscles, soft robotics, and actuators, etc. This paper overviews our recent progresses in the design and synthesis of hydrogels with very high strength and toughness, and actuators based on these hydrogels. Inorganic nanospheres, nanorods, and nanosheets are exploited as multi-functional crosslinkers to adsorb or bond with hydrophilic chains, leading to hydrogels with very high strength, toughness, fatigue resistance, and/or self-healing. Introduction of functional groups including ionic monomers and amino groups results in hydrogels reponsive to pH, ionic strength and electric field. Besides, ionoprinting has been used to change local crosslink density based on reversible chelating/decomposition of metal ions with functional groups. This process is rapid and thus enables reversible and rapid actuation of hydrogel devices. Our studies will further aim to develop sophiscated devices by assembling hydrogel actuators.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Okay, O., Oppermann, W., Macromolecules 40 (2007) 33783387.Google Scholar
Shibayama, M., Karino, T., Miyazaki, S., Okabe, S., Takehisa, T., Haraguchi, K., Macromolecules 38 (2005) 1077210781.Google Scholar
Zhao, X., Soft Matter 10 (2014) 672687.CrossRefGoogle Scholar
Okumura, Y., Ito, K., Advanced Materials 13 (2001) 485.Google Scholar
Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y., Adv. Mater. 15 (2003) 1155.CrossRefGoogle Scholar
Gong, J.P., Soft Matter 6 (2010) 25832590.CrossRefGoogle Scholar
Lin, W.-C., Fan, W., Marcellan, A., Hourdet, D., Creton, C., Macromolecules 43 (2010) 25542563.Google Scholar
He, C., Jiao, K., Zhang, X., Xiang, M., Li, Z., Wang, H., Soft Matter 7 (2011) 29432952.Google Scholar
Yang, J., Deng, L.-H., Han, C.-R., Duan, J.-F., Ma, M.-G., Zhang, X.-M., Xu, F., Sun, R.-C., Soft Matter 9 (2013) 12201230.CrossRefGoogle Scholar
Schexnailder, P., Schmidt, G., Colloid Polym. Sci. 287 (2009) 111.Google Scholar
Wu, Z.L., Kurokawa, T., Liang, S., Furukawa, H., Gong, J.P., J. Am. Chem. Soc. 132 (2010) 1006410069.Google Scholar
Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A., Nat. Commun. 2 (2011).Google Scholar
Gao, H., Wang, N., Hu, X., Nan, W., Han, Y., Liu, W., Macromol. Rapid Commun. 34 (2013) 6368.Google Scholar
Tuncaboylu, D.C., Argun, A., Sahin, M., Sari, M., Okay, O., Polymer 53 (2012) 55135522.CrossRefGoogle Scholar
Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T., Gong, J.P., Nat Mater 12 (2013) 932937.Google Scholar
Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A., Adv. Mater. 25 (2013) 28492853.Google Scholar
Wang, Q., Hou, R.X., Cheng, Y.J., Fu, J., Soft Matter 8 (2012) 60486056.CrossRefGoogle Scholar
Gao, G., Du, G., Sun, Y., Fu, J., ACS Appl. Mater. Interf. 7 (2015) 50295037.Google Scholar
Sun, Y.-n., Gao, G.-r., Du, G.-l., Cheng, Y.-j., Fu, J., ACS Macro Lett. 3 (2014) 496500.Google Scholar
Sun, Y., Liu, S., Du, G., Gao, G., Fu, J., Chem. Commun. 51 (2015) 85128515.CrossRefGoogle Scholar
Zhu, M., Xiong, L., Wang, T., Liu, X., Wang, C., Tong, Z., React. Funct. Polym. 70 (2010) 267271.Google Scholar
Osada, Y., Okuzaki, H., Hori, H., Nature 355 (1992) 242244.Google Scholar