Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T18:22:28.897Z Has data issue: false hasContentIssue false

Monocrystalline elastic constants of fcc-CrMnFeCoNi high entropy alloy

Published online by Cambridge University Press:  23 January 2017

Katsushi Tanaka*
Affiliation:
Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
Takeshi Teramoto
Affiliation:
Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
Ryo Ito
Affiliation:
Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
Get access

Abstract

Mono-crystalline elastic constants of equiatomic quinary Cr-Mn-Fe-Co-Ni high entropy alloy with the fcc structure have experimentally been determined by a resonance ultrasound spectroscopy at room temperature. The values of the bulk modulus of the high entropy alloy experimentally determined are similar to other conventional fcc metals when the values are normalized by the melting points. This indicates that the entropy change at melting is similar to that of conventional metals. The values of Pough’s index and the Cauchy pressure are determined as 1.79 and -11.6 GPa, respectively. When the ductility of the alloy is judged from the indices, the ductility of the high entropy alloy is limited. In order to explain the negative Cauchy pressure of the high entropy alloy, it is required to assume that relatively strong directional interatomic bondings like intermetallic compounds exist in the alloy though the crystal is disordered solid solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Adv. Eng. Mater. 6, 299303 (2004).Google Scholar
Senkow, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., Intermetallics 19, 698706 (2011).CrossRefGoogle Scholar
Senkow, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., Woodward, C.F., J. Mater. Sci. 47, 40624074 (2012).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., Spolenak, R., Acta Mater. 65, 8597 (2014).Google Scholar
Wu, Y. D., Cai, Y. H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., Hui, X.D., Mater. Lett. 130, 277280 (2014).Google Scholar
Couzinié, J.P., Dirras, G., Perrière, L., Chauveau, T., Leroy, E., Champion, Y., Guillot, I., Mater. Lett. 126, 285287 (2014).Google Scholar
Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B., Mater. Sci. Eng. A375-377, 213218 (2004).Google Scholar
Otto, F., Yang, Y., Bei, H., George, E.P., Acta Matter. 61, 26282638 (2013).Google Scholar
Yao, M.J. Pradeep, K.G., Tasan, C.C., Raabe, D., Scripta Mater. 68, 526529 (2013).Google Scholar
He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., Lu, Z.P., Acta Mater. 62, 105113 (2014).Google Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., Zhang, W., JOM 66, 19841992 (2014).CrossRefGoogle Scholar
Lilensten, L., Couzinié, J.P., Perriére, L., Bourgon, J., Emery, N., Guillot, I., Mater. Lett. 132, 123125 (2014).Google Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., Sci. Rep. 6, 35863 (2016).Google Scholar
Haglund, A., Koehler, M., Catoor, D., George, E.P., Keppens, V., Intermetallics 58, 6264 (2015).Google Scholar
Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., George, E.P., J. Alloys Comp. 623, 348353 (2015).Google Scholar
Zaddach, A.J., Niu, C., Koch, C.C., Irving, D.L., JOM 65, 17801789 (2013).Google Scholar
Hill, R., Proc. Phys. Soc. A65, 349354 (1952).Google Scholar
Tanaka, K., Koiwa, M., High Temp. Mater. Proc. 18, 323336 (1999).Google Scholar
Pugh, S.F., Phil. Mag. 45, 823843 (1954).Google Scholar
Pettifor, D.G., Mater. Sci. Tech. 8, 345349 (1992).Google Scholar
Simmons, G., Wang, H., “Single Crystal Elastic Constants and Calculated Aggregate Properties; a Handbook”, MIT Press, Cambridge (1971).Google Scholar