Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T18:16:24.786Z Has data issue: false hasContentIssue false

Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9

Published online by Cambridge University Press:  23 January 2017

David J. Magginetti
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Shrikant Saini
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Ashutosh Tiwari*
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
*
Get access

Abstract

Ca3Co4O9 (CCO) is a promising material for thermoelectric applications; however, this layered oxide shows a large number of physical features that complicate understanding and systematically improving its properties. A significant component of CCO’s behavior is its magnetotransport properties, particularly in the low temperature region where an incommensurate spin density wave affects its band structure. In order to improve understanding in this area, we perform low temperature magnetoresistance (MR) measurements on a bulk CCO sample. Field-less resistivity measurements confirm the conventional behavior of our sample, with a metal-to-insulator transition at approximately 70 K, and a shoulder indicating ferrimagnetism at 14 K. Resistivity vs. temperature under applied magnetic field show significant MR below around 35 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Y., Sui, Y., Cheng, J., Wang, X., Su, W., Liu, X., and Fan, H. J.. Phys. Chem. C 114, 5174 (2010)Google Scholar
Tian, R., Donelson, R., Ling, C. D., Blanchard, P. E. R., Zhang, T., Chu, D., Tan, T. T., and Li, S., J. Phys. Chem. C 117, 13382 (2013)Google Scholar
Tang, G. D., Wang, Z. H., Xu, X. N., Qiu, L., and Du, Y. W., J. Appl. Phys. 107, 053715 (2010)Google Scholar
Luo, X. G., Chen, X. H., Wang, G. Y., Wang, C. H., Xiong, Y. M., Song, H. B. and Lu, X. X., Europhys. Lett. 74, 526 (2006)Google Scholar
Saini, S., Mele, P., Miyazaki, K., and Tiwari, A., Energ. Convers. Manage. 114, 251 (2016)CrossRefGoogle Scholar
Koshibae, W., Tsutsui, K., and Maekawa, S., Phys. Rev. B 62, 6869 (2000)Google Scholar
Limelette, P., Hardy, V., Auban-Senzier, P., Jérome, D., Flahaut, D., Hébert, S., Frésard, R., Simon, Ch., Noudem, J., and Maignan, A., Phys. Rev. B 71, 233108 (2005)CrossRefGoogle Scholar
Altin, S., Aksan, M.A., Bayri, A., J. Alloy Compd 587, 40 (2014)CrossRefGoogle Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B., Phys. Rev. B 62, 166 (2000)Google Scholar
Jarrell, M., Pang, H., Cox, D. L., and Luk, K. H., Phys. Rev. Lett. 77, 1612 (1996)Google Scholar
Haule, K., Rosch, A., Kroha, J., and Wölfle, P., Phys. Rev. Lett. 89, 236402 (2002)CrossRefGoogle Scholar
Hartnoll, S. A., Nat. Phys. 11, 54 (2015)Google Scholar
Zhu, X., Sun, Y., Lei, H., Li, X., Ang, R., Zhao, B., Song, W., Shi, D., and Dou, S., J. Appl. Phys. 102, 103519 (2007)CrossRefGoogle Scholar
Sugiyama, J., Itahara, H., and Tani, T., Phys. Rev. B 66, 134413 (2002)CrossRefGoogle Scholar
Sugiyama, J., Brewer, J. H., Ansaldo, E. J., Itahara, H., Dohmae, K., Seno, Y., Xia, C., and Tani, T., Phys. Rev. B 68, 134423 (2003)Google Scholar
Huang, Y., Zhao, B., Ang, R., Lin, S., Huang, Z., Yin, L., Tan, S., Liu, Y., Song, W., and Sun, Y., J. Am. Ceram. Soc. 96, 791 (2013)Google Scholar
Limelette, P., Soret, J. C., Muguerra, H.,2 and Grebille, D., Phys. Rev. B 77, 245123 (2008)CrossRefGoogle Scholar