Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T18:12:23.314Z Has data issue: false hasContentIssue false

In situ XANES Analysis of Co and Ni Catalysts during Single-Walled Carbon Nanotube Growth

Published online by Cambridge University Press:  02 January 2018

Makoto Kumakura*
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya468-8502, Japan
Hoshimitsu Kiribayashi
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya468-8502, Japan
Takahiro Saida
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya468-8502, Japan
Shigeya Naritsuka
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya468-8502, Japan
Takahiro Maruyama
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya468-8502, Japan
Get access

Abstract

In situ X-ray absorption near edge structure (XANES) measurements were conducted to elucidate the chemical states of Co and Ni catalysts during single-walled carbon nanotube (SWCNT) growth via chemical vapor deposition (CVD). XANES spectra indicated that both Co and Ni catalysts partially oxidized before heating. It was found that Co catalysts formed carbides during the SWCNT growth. In contrast, Ni catalysts remained metallic state even after the SWCNT growth had begun. These results indicate that during SWCNT growth, carbon atoms dissolve into Co particles, whereas for Ni particles, they diffuse on the surface region. It was concluded that the growth mechanisms of SWCNTs formed by CVD differed for either Co or Ni catalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
Javey, J. Guo, Q. Wang, M. Lundstrom, and Dai, H., Nature 424, 654 (2003).CrossRefGoogle Scholar
Dürkop, T., Getty, S.A., Cobas, E. and Fuhre, M. S., Nano Lett. 4, 35 (2004).CrossRefGoogle Scholar
Hong, S. and Myung, S., Nat. Nanotechnol. 2, 207 (2007).CrossRefGoogle Scholar
Tans, S. J., Vershueren, A. R. M. and Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
Wind, S. J., Appenzeller, J., Martel, R., Derycke, V. and Abouris, P. H., Appl. Phys. Lett. 80, 3817 (2002).CrossRefGoogle Scholar
Kondo, D., Sato, S., Kawabata, A. and Awano, Y., Nanotechnol. 19, 435601 (2008).CrossRefGoogle Scholar
Iwasaki, T., Robertson, J. and Kawarada, H., Nano Lett. 8, 886 (2008).CrossRefGoogle Scholar
Dai, H., Surf. Sci. 500, 218 (2002).CrossRefGoogle Scholar
Dai, H., Kong, J., Zhou, C., Franklin, N., Tombler, T., Cassell, A., Fan, S. and Chapline, M., J. Phys. Chem. 103, 11246 (1999).CrossRefGoogle Scholar
He, M., Magnin, Y., Amara, H., Jiang, H., Cui, H., Fossard, F., Castan, A., Kauppinen, E., Loiseau, A. and Bichara, C., Carbon 113, 231 (2015).CrossRefGoogle Scholar
Picher, M., Lin, P. A., Gomez-Ballesteros, J. L., Balbuena, P. B. and Sharma, R., Nano Lett. 14, 6104 (2014).CrossRefGoogle Scholar
Lin, M., Tan, J. P. Y., Boothroyd, C., Loh, K. P., Tok, E. S. and Foo, Y. L., Nano Lett. 6, 449 (2006).CrossRefGoogle Scholar
Jorio, R. Saito, J. H. Hahner, C. M. Liever, M. Hunter, T. McClure, G. Dresselhaus, and Dresselhaus, M. S., Phys. Rev. Lett. 86, 1118 (2001).CrossRefGoogle Scholar
Gnanamania, K., Jacobsa, G., Grahama, U. M., Ribeirob, M. C., Noronhac, F. B., Shafera, W. D. and Davis, B H., Catal. Today 261, 40 (2016).CrossRefGoogle Scholar
Struis, R. P. W. J., Bachelin, D., Ludwig, C. and Wokaun, A., J. Phys. Chem. C, 113, 2443 (2009).CrossRefGoogle Scholar
Kohigashi, Y., Yoshida, H., Homma, Y. and Takeda, S., Appl. Phys. Lett. 105, 073108 (2014).CrossRefGoogle Scholar
Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A. C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A. and Robertson, J., Nano Lett. 7, 602 (2007).CrossRefGoogle Scholar
Esconjauregui, S., Whelan, C. M. and Maex, K., Carbon 47, 659 (2009).CrossRefGoogle Scholar
Sung, M. and Tai, M. F., Int. J. Refract. Met. Hard Mater. 15, 237 (1997).CrossRefGoogle Scholar
Shatynski, S. R., Oxidation of Metals. 13, 105 (1979).CrossRefGoogle Scholar
Magnin, Y., Zappelli, A., Amara, H., Ducastelle, F. and Bichara, C., Phys. Rev. Lett. 115, 205502 (2015).CrossRefGoogle Scholar