Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T19:37:34.067Z Has data issue: false hasContentIssue false

Impact of Layer Number on Flexible High-Voltage Nanostructured Solar Cells

Published online by Cambridge University Press:  02 February 2016

Roger E. Welser*
Affiliation:
Magnolia Solar, Inc., 251 Fuller Road, CESTM-B250, Albany, NY 12203 Magnolia Optical Technologies, Inc., 52-B Cummings Park, Suite 314, Woburn, MA 01801
Ashok K. Sood
Affiliation:
Magnolia Solar, Inc., 251 Fuller Road, CESTM-B250, Albany, NY 12203 Magnolia Optical Technologies, Inc., 52-B Cummings Park, Suite 314, Woburn, MA 01801
S. Rao Tatavarti
Affiliation:
MicroLink Devices, Inc., 6457 W. Howard Street, Niles, IL 60048
Andree Wibowo
Affiliation:
MicroLink Devices, Inc., 6457 W. Howard Street, Niles, IL 60048
David M. Wilt
Affiliation:
Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117
Get access

Abstract

Nanostructured quantum well and quantum dot solar cells are being widely investigated as a means of extending infrared absorption and enhancing photovoltaic device performance. In this work, we describe the impact of nanostructured layer number on the performance of flexible, highvoltage InGaAs/GaAs quantum well solar cells. Multiple quantum well structures are observed to have a higher short circuit current but a lower open circuit voltage than similar single quantum well structures. Analysis of the underlying dark diode characteristics indicate that these highvoltage structures are limited by radiative recombination at high bias levels. The results of this study suggest that future development efforts should focus on maximizing the current generating capability of a limited number of nanostructured layers and minimizing recombination within the nanostructured absorber.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luque, A., Marti, A., and Stanley, C., “Understanding Intermediate Band Solar Cells,” Nature Photonics, vol. 6, pp 146152 (March 2012).CrossRefGoogle Scholar
Laghumavarpu, R. B., Sun, M., Simmonds, P. J., Liang, B., Hellstroem, S., Bittner, Z., Polly, S., Norman, A.G., Luo, J-W., Hubbard, S., Welser, R., Sood, A.K., and Huffaker, D. L., “New Quantum Dot Nanomaterials to Boost Solar Energy Harvesting,” SPIE Newsroom, no. 10.1117/2.1201401.005315 (January 2014).CrossRefGoogle Scholar
Hirst, L. C., Fujii, H., Wang, Y., Sugiyama, M., and Ekins-Daukes, N. J., “Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement,” IEEE J. of Photovoltaics, vol. 4, pp. 244252 (January 2014).CrossRefGoogle Scholar
Tang, J., Whiteside, V. R., Esmaielpour, H., Vijeyaragunathan, S., Mishima, T. D., Santos, M. B., and Sellers, I. R., “Effects of Localization on Hot Carriers in InAs/AlAsxSb1-x Quantum Wells,” Appl. Phys. Lett., vol. 106, no. 061902 (February 2015).CrossRefGoogle Scholar
Welser, R. E., Laboutin, O. A., Chaplin, M., and Un, V.“Reducing Non-Radiative and Radiative Recombination in InGaAs Quantum Well Solar Cells,” Proceedings of the 37th IEEE Photovoltaic Specialists Conference, pp. 26832686 (June 2011).CrossRefGoogle Scholar
Bauhuis, G. J.. Mulder, P., Haverkamp, E. J., Huijben, J. C. C. M., and Schermer, J. J., “26.1 % Thin-Film GaAs Solar Cell Using Epitaxial Lift-off,” Solar Energy Materials & Solar Cells, vol. 93, pp. 14881491 (May 2009).Google Scholar
Tatavarti, Rao, Wibowo, A., Martin, G., Tuminello, F., Youtsey, C., Hillier, G., Pan, N., Wanlass, M.W., and Romero, M., “InGaP/ GaAs / InGaAs Inverted Metamorphic Solar Cells on 4” Epitaxial Lifted Off (ELO) Wafers,” Proceedings of 35th IEEE PVSC Conference, Honolulu, pp. 002125002128 (June 2010).CrossRefGoogle Scholar
Rau, U., "Reciprocity Relation Between Photovoltaic Quantum Efficiency and Electroluminescence Emission of Solar Cells," Phys. Rev. B, vol. 76, no. 085303 (August 2007).CrossRefGoogle Scholar
Kishino, K., Ünlü, M. S., Chyi, J. I., Reed, J., Arsenault, L., and Morkoç, H., “Resonant Cavity-Enhanced (RCE) Photodetectors,” IEEE J. of Quantum Electronics, vol. 27, pp. 20252034 (August 1991).CrossRefGoogle Scholar
Welser, R. E., Pethuraja, G. G., Sood, A. W., Sood, A. K., Haldar, P., and Dhar, N. K., " Flexible, High-Efficiency Solar Cells: Approaches and Advanced Design Concepts," Proceedings of SPIE, vol. 8278, no. 87280J (May 2013).CrossRefGoogle Scholar
Asbeck, P. M., Chang, M.-C. F., Wang, K. C., and Miller, D. L., “Heterojunction Bipolar Transistor Technology,” Chapter 4 in “Introduction to Semiconductor Technology: GaAs and Related Compounds,” Wang, C. T., editor, John Wiley & Sons (May 1990).Google Scholar
Dodd, P.E., Stellwag, T.B., Melloch, M.R., and Lundstrom, M.S., “Surface and Perimeter Recombination in GaAs Diodes: An Experimental and Theoretical Investigation,” IEEE Trans. Electron Devices, vol. 38, pp. 12531261 (June 1991).CrossRefGoogle Scholar
Welser, R. E., “Thick-Well Quantum-Structured Solar Cells: Design Criteria for Nano-EnhancedAbsorbers,” Proceedings of SPIE, vol. 8620, no. 86201C (February 2013).CrossRefGoogle Scholar
Marti, A., Balenzategui, J. L., and Reyna, R. F., “Photon Recycling and Shockley’s Diode Equation,” J. Appl. Phys., vol. 82, pp. 40674075 (June 1997).Google Scholar
Blood, P., "On the Dimensionality of Optical Absorption, Gain, and Recombination in Quantum-Confined Structures," IEEE J. of Quantum Electronics, vol. 36, pp. 354362 (March 2000).CrossRefGoogle Scholar
Welser, R. E., Sood, A. K., Laghumavarapu, R. B., Huffaker, D. L., Wilt, D. M., Dhar, N. K. and Sablon, K. A., “The Physics of High-Efficiency Thin-Film III-V Solar Cells,”Solar Cells - New Approaches and Reviews, Kosyachenko, L. A. (Ed.), InTech, DOI: 10.5772/59283 (October 2015).Google Scholar