Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-24T13:45:23.816Z Has data issue: false hasContentIssue false

Functionalized Block-Copolymer Templates for Synthesis and Shape Control of Quantum Dots

Published online by Cambridge University Press:  04 April 2018

Brian Billstrand
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Kaifu Bian
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Casey Karler
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States;
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico, 87106, United States; The University of New Mexico Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, Albuquerque, New Mexico 8713, United States
*
*(Email: hfan@sandia.gov)
Get access

Abstract

A new quantum dot synthesis method based on metallic-block copolymer precursors was developed. The synthesis produced CdS QDs assembled into chains. This method provides a new model for the study of 1D QD chains to determine its effect on charge transport and optoelectronic coupling. This synthesis method was readily extended to other semiconductor materials including PbS and perovskites producing QDs of various shapes. It evidenced further promise of this synthesis method to assist in the assembly, shape and size control of various nanomaterials

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, H., Xu, L., Liu, N., Zhang, R., Xu, J., Su, W. and Chen, K., Can. J. Phys., 92, 802 (2014).CrossRefGoogle Scholar
Zhao, D. and Yang, C., Renew. Sust. Energ. Rev., 54, 1048 (2016).CrossRefGoogle Scholar
Upadhyay, R., Sharma, M., Singh, D., Amritphale, S. and Chandra, N., Sep. Purif. Technol., 88,39 (2012).CrossRefGoogle Scholar
Zhang, H., Chen, S. and Sun, X., ACS Nano, 12, 697 (2018).CrossRefGoogle Scholar
Hosseini, M. and Kamali, M., J. Lumin., 167, 51 (2015).CrossRefGoogle Scholar
Arellano, I., Arellano, I., Mangadlao, J., Ramiro, I., and Suazo, K., Mater. Lett., 64, 785 (2010).CrossRefGoogle Scholar
Parani, S., Tsolekile, N., Pandian, K. and Oluwafemi, O., J. Mater. Sci.. -Mater. Electron., 28, 11151 (2017).CrossRefGoogle Scholar
Zhang, L., Shen, X., Liang, H. and Yao, J., J. Phys. Chem. C, 114, 21921 (2010).CrossRefGoogle Scholar
Hu, M. and Zhu, T., Nanoscale Res. Lett., 10, 1 (2015).Google Scholar
Eita, M., Usman, A., El-Ballouli, A., Alarousu, E., Bakr, O. and Mohammed, O., Small, 11, 112 (2015).CrossRefGoogle Scholar
Yi, L., Lacie, D., Yadong, Z., Shengli, Z. and Jing, Z., Prog. Nat. Sci. Mat Int, 26, 449 (2016).Google Scholar
Baranov, A., Litvin, A., Fedorov, A., Ushakova, E., Cherevkov, S. and Kasatkin, I., J. Phys. Chem. C, 120, 25061 (2016).Google Scholar
Zhang, X., Lv, L., Ji, L., Guo, G., Liu, L., Han, D. and Yang, D., J. Am. Chem. Soc., 138, 3290 (2016).CrossRefGoogle Scholar
Tavakoli, N., Adeli, M. and Vossoughi, M., Eur. Polym. J., 46, 165 (2010).CrossRefGoogle Scholar
Dong, L., Hollis, T., Connolly, B., Wright, N., Horrocks, B. and Houlton, A., Adv. Mat., 19, 1748 (2007).CrossRefGoogle Scholar
Tai, G., Zhou, J., Guo, W., J., Nanotech., 21, 175601 (2010).CrossRefGoogle Scholar
Celebi, S., Erdamar, A., Sennaroglu, A., Kurt, A. and Acar, H., J. Phys. Chem. B, 111. 12668 (2007).CrossRefGoogle Scholar
Li, Y., Li, Q., Wu, H., Huang, C., Lin, H. and Qin, L., J. Nanopart. Res., 17, 362 (2015).CrossRefGoogle Scholar