Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T11:11:41.424Z Has data issue: false hasContentIssue false

First-Principles Study of Charge Carrier Dynamics with Explicit Treatment of Momentum Dispersion on Si Nanowires along <211> crystallographic Directions

Published online by Cambridge University Press:  13 August 2018

Fatima
Affiliation:
Department of Physics & Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA
Jon Vogel
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, USA
Talgat Inerbaev
Affiliation:
L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
Nuri Oncel
Affiliation:
Department of Physics & Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA
Dmitri Kilin*
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, USA
Get access

Abstract

The ground state structure, optical properties and charge carrier dynamics of silicon nanowire (SiNW) grown in <211> crystallographic direction is studied as a function of wavevector using density functional theory. This nanowire can be used as fundamental unit of nanoelectronic devices. The optical properties are computed under assumption of momentum conservation$\Delta \vec{k} = 0$. The on-the-fly non-adiabatic couplings for electronic degrees of freedom are obtained along the ab initio molecular dynamics nuclear trajectories, which are used as parameters for Redfield density matrix equation of motion. By investigating the photo-induced process on this nanowire, it is shown that high-energy photoexcitation relaxes to the band gap edge within 75 ps. The results of these calculations help to understand the mechanism of electron transfer process on the Si nanowire.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hammes‐Schiffer, S.; Tully, J. C., J. Chem Phys., 101 (6), 4657-4667(1994).CrossRefGoogle Scholar
Chen, J.; Schmitz, A.; Inerbaev, T.; Meng, Q.; Kilina, S.; Tretiak, S.; Kilin, D. S., J. Phys. Chem. Lett., 4, 2906-2913 (2013).CrossRefGoogle Scholar
Ng, M.-F.; Zhou, L.; Yang, S.-W.; Sim, L. Y.; Tan, V. B.; Wu, P., Phys. Rev. B, 76, 155435 (2007).CrossRefGoogle Scholar
Peercy, P. S., Nature, 406, 1023, (2000).CrossRefGoogle Scholar
Pauzauskie, P. J.; Yang, P., Mater today, 9, 36-45 (2006).CrossRefGoogle Scholar
Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L.-F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B.; Gösele, U., Mater today, 9, 28-35, (2006).CrossRefGoogle Scholar
Seo, M.; Dayeh, S.; Upadhya, P.; Martinez, J.; Swartzentruber, B.; Picraux, S.; Taylor, A.; Prasankumar, R., Appl. Phys. Lett, 100, 071104, (2012).CrossRefGoogle Scholar
Jung, Y.; Vacic, A.; Perea, D. E.; Picraux, S. T.; Reed, M. A., Adv. Mater., 23, 4306-431, (2011).CrossRefGoogle Scholar
Hoffmann, S.; Bauer, J.; Ronning, C.; Stelzner, T.; Michler, J.; Ballif, C.; Sivakov, V.; Christiansen, S., Nano Lett, 9, 1341-1344, (2009).CrossRefGoogle Scholar
Webb, S. P.; Iordanov, T.; Hammes-Schiffer, S., J. Chem.Phys., 117, 4106-4118, (2002).CrossRefGoogle Scholar
Inerbaev, T. M.; Hoefelmeyer, J. D.; Kilin, D. S., J. Phys. Chem. C, 117, 9673-9692, (2013).CrossRefGoogle Scholar
Huang, S.; Kilin, D. S., J. Chem. Theory and Comp., 10, 3996-4005 (2014).CrossRefGoogle Scholar
Kilina, S.; Kilin, D.; Tretiak, S., Chem. Rev., 115, 5929-5978,(2015).CrossRefGoogle Scholar
Tully, J. C., J. Chem. Phys., 93, 1061-1071, (1990).CrossRefGoogle Scholar
Rego, L. G.; Batista, V. S., J. Am. Chem. Soc., 125, 7989-7997 (2003).CrossRefGoogle Scholar
Kilin, D. S.; Micha, D. A., J. Phys. Chem. Lett., 1, 1073-1077, (2010).CrossRefGoogle Scholar
Chen, J.; Schmitz, A.; Kilin, D. S., Int. J. Quant. Chem, 112, 3879-3888, (2012) .CrossRefGoogle Scholar
Hohenberg, P.; Kohn, W., Phys. Rev., 136, B864, (1964).CrossRefGoogle Scholar
Kresse, G., Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Kohn, W., Kohn, W. and Sham, Lj, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Paulsen, R. T.; Kilin, D. S., MRS Online Proceed. Lib. Arch., 1787, 21-25, (2015).CrossRefGoogle Scholar
Vanderbilt, D., Phys. Rev. B, 41, 7892 (1990).CrossRefGoogle Scholar
Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett, 77, 3865 (1996).CrossRefGoogle Scholar
Huang, S.; Kilin, D. S., Mol. Phys., 112, 539-545, (2014).CrossRefGoogle Scholar
Fatima, , Zepeda, M.; Oncel, N., Thin Solid Films, 623, 135-137 (2017).CrossRefGoogle Scholar
Fatima, ; Can Oguz, I.; Çakır, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, N., J. Appl. Phys., 120, 095303, (2016).CrossRefGoogle Scholar
Vogel, D. J.; Kryjevski, A.; Inerbaev, T.; Kilin, D. S., J. Phys. Chem. Lett., 8, 3032-3039, (2017).CrossRefGoogle Scholar
Supplementary material: File

Fatima et al. supplementary material

Fatima et al. supplementary material 1

Download Fatima et al. supplementary material(File)
File 1.6 MB