Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T08:08:06.009Z Has data issue: false hasContentIssue false

Fabrication and Surface Engineering of Two-Dimensional SnS Toward Piezoelectric Nanogenerator Application

Published online by Cambridge University Press:  25 April 2018

Naoki Higashitarumizu*
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
Hayami Kawamoto
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
Keiji Ueno
Affiliation:
Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama338-8570, Japan
Kosuke Nagashio
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan PRESTO, Japan Science and Technology Agency (JST), Tokyo113-8656, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mechanical exfoliation is performed to fabricate ultrathin SnS layers, and chemical/thermal stability of SnS layers is discussed in comparison with GeS, toward piezoelectric nanogenerator application. Both SnS and GeS are difficult to be exfoliated under 10 nm using tape exfoliation due to strong interlayer ionic bonding by lone pair electrons in Sn or Ge atoms. Au-mediated exfoliation enables to fabricate larger-scale ultrathin SnS and GeS layers thinner than 10 nm owing to strong semi-covalent bonding between Au and S atoms, but GeS surface immediately degrades during Au etching in an oxidative KI/I2 solution. Although the surface of SnS after the Au-mediated exfoliation reveals several-nm oxide layer of SnOx, the surface morphology retains the flatness unlike the case of GeS. The SnS layers are more robust than GeS against the thermal annealing as well as the chemical treatment, suggesting that SnOx works as a passivation layer for SnS. Self-passivated SnS monolayer can be obtained by a controlled post-oxidation.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

REFERENCES

Fei, R., Li, W., Li, J. and Yang, L., Appl. Phys. Lett. 107, 173104 (2015).CrossRefGoogle Scholar
Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T. F., Hone, J. and Wang, Z. L., Nature 514, 470 (2014).CrossRefGoogle Scholar
Sun, Y., Sun, Z., Gao, S., Cheng, H., Liu, Q., Lei, F., Wei, S., and Xie, Y., Adv. Energy Mater. 4, 1300611 (2014).CrossRefGoogle Scholar
Xia, J., Li, X. -Z., Huang, X., Mao, N., Zhu, D. -D., Wang, L., Xu, H. and Meng, X. -M., Nanoscale 8, 2063 (2016).CrossRefGoogle Scholar
Song, H. -Y. and , J. -T., Chem. Phys. Lett. 695, 200 (2018).CrossRefGoogle Scholar
Guo, Y., Zhou, S., Bai, Y. and Zhao, J., ACS Appl. Mater. Interfaces 9, 12013 (2017).CrossRefGoogle ScholarPubMed
Mehboudi, M., Dorio, A. M., Zhu, W., Van Der Zande, A., Churchill, H. O. H., Pacheco-Sanjuan, A. A., Harriss, E. O., Kumar, P. and Barraza-Lopez, S., Nano Lett. 16, 1704 (2016).CrossRefGoogle Scholar
Prabhakaran, K., Maeda, F., Watanabe, Y. and Ogino, T., Thin Solid Films 369, 289 (2000).CrossRefGoogle Scholar
Kita, K., Lee, C. H., Tabata, T., Nishimura, T., Nagashio, K. and Toriumi, A., J. Appl. Phys. 108, 54104 (2010).CrossRefGoogle Scholar
Desai, S. B., Madhvapathy, S. R., Amani, M., Kiriya, D., Hettick, M., Tosun, M., Zhou, Y., Dubey, M., Ager, J. W., Chrzan, D. and Javey, A., Adv. Mater. 28, 4053 (2016).CrossRefGoogle Scholar
Chandrasekhar, H. R., Humphreys, R. G., Zwick, U. and Cardona, M., Phys. Rev. B 15, 2177 (1977).CrossRefGoogle Scholar
Wiley, J. D., Buckel, W. J. and Schmidt, R. L., Phys. Rev. B 13, 2489 (1976).CrossRefGoogle Scholar
Maurel, C., Cardinal, T., Vinatier, P., Petit, L., Richardson, K., Carlie, N., Guillen, F., Lahaye, M., Couzi, M., Adamietz, F., Rodriguez, V., Lagugné-Labarthet, F., Nazabal, V., Royon, A., and Canioni, L., Mater. Res. Bull. 43, 1179 (2008).CrossRefGoogle Scholar
Morgan, W. E. and Van Wazer, J. R., J. Phys. Chem. 77, 964 (1973).CrossRefGoogle Scholar
Lide, D. R., CRC handbook of chemistry and physics, 79th ed. (CRC Press, New York, 1998) p. 490.Google Scholar
Pei, J., Gai, X., Yang, J., Wang, X., Yu, Z., Choi, D.-Y., Luther-Davies, B., and Lu, Y., Nat. Commun. 7, 10450 (2016).CrossRefGoogle Scholar
Yamamoto, M., Dutta, S., Aikawa, S., Nakaharai, S., Wakabayashi, K., Fuhrer, M.S., Ueno, K., and Tsukagoshi, K., Nano Lett. 15, 2067 (2015).CrossRefGoogle Scholar