Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-29T05:01:57.579Z Has data issue: false hasContentIssue false

Effect of UV Laser Irradiation on the properties of NiO films and ZnO/NiO Heterostructures

Published online by Cambridge University Press:  03 February 2016

Srikanth Itapu*
Affiliation:
Department of EECS, University of Toledo, Toledo, OH 43606, U.S.A.
Kamruzzaman Khan
Affiliation:
Department of EECS, University of Toledo, Toledo, OH 43606, U.S.A.
Daniel G. Georgiev
Affiliation:
Department of EECS, University of Toledo, Toledo, OH 43606, U.S.A.
Get access

Abstract

The present work accentuates the effect of UV laser irradiation on the conductivity of nickel oxide (NiO) thin films, deposited at various temperatures by radio-frequency reactive sputtering of Ni in oxygen containing atmosphere. The effect of UV irradiation on zinc oxide – nickel oxide heterostructures, obtained by sputtering, was examined as well. It was found that the resistivity of NiO changes from 12 Ω-cm to 0.62 Ω-cm, and the majority carrier concentration from 3.95x1017 holes/cm3 to 4.22x1020 electrons/cm3. The current-voltage (I-V) characteristics of the ZnO/NiO heterostructure shows an improved p-n diode behavior with the forward bias current increasing for the laser-irradiated ZnO/NiO compared to the as-deposited stack. The observed improvement in diode-like behavior suggests that laser irradiation can be an important technique to controllably change the structural, electrical and optical properties of metal oxide thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ji, L.F., Jiang, Y., Wang, W. and Yu, Z., Appl. Phy. Lett. 85, 1577 (2004).CrossRefGoogle Scholar
Ji, Y. and Jiang, Y., Appl. Phy. Lett. 89, 221103 (2006).CrossRefGoogle Scholar
Chang, L., Jiang, Y. and Ji, L.F., Appl. Phy. Lett. 90, 082505 (2007).CrossRefGoogle Scholar
Long, H., Fang, G., Huang, H., Mo, X., Xia, W., Dong, B., Meng, X. and Zhao, X., Appl. Phy. Lett. 95, 013509 (2009).CrossRefGoogle Scholar
Nakamura, Y., Ishikura, Y., Morita, Y., Takagi, H. and Fujitsu, S., Sens. & Actuators B: Chem. 187, 578 (2013).CrossRefGoogle Scholar
Betancur, R., Maymo, M., Elias, X., Vuong, L.T. and Martorell, J., Solar Energy Mat. & Solar Cells 95, 735 (2011).CrossRefGoogle Scholar
Gupta, P., Dutta, T., Mal, S. and Narayan, J., Appl. Phy. Lett. 111, 013706 (2012).CrossRefGoogle Scholar
Tyagi, M., Tomar, M. and Gupta, V., IEEE Elec. Dev. Lett, 34, 81 (2013).CrossRefGoogle Scholar
Liu, S., Liu, S.L., Long, Y.Z., Liu, L.Z., Zhang, H.D., Zhang, J.C., Han, W.P. and Liu, Y.C., Appl. Phy. Lett. 104, 042105 (2014).CrossRefGoogle Scholar
Khan, E.H., Langford, S.C. and Dickinson, J.T., Langmuir 25, 1930 (2009).CrossRefGoogle Scholar
Janotti, A. and Van De Walle, C.G., Rep. Prog. Phys. 72, 126501 (2009).CrossRefGoogle Scholar
Zhao, Y. and Jiang, Y., Appl. Phy. Lett. 103, 114903 (2008).CrossRefGoogle Scholar
Lu, H., Tu, Y., Lin, X., Fang, B., Luo, D. and Laaksonen, A., Mat. Lett. 64, 2072 (2010).CrossRefGoogle Scholar
Wen, X.M., Xu, P. and Lukins, P.B., J. Luminescence 106, 1 (2004).CrossRefGoogle Scholar
Cho, D.Y., Song, S.J., Kim, U.K., Kim, K.M., Lee, H.K. and Hwang, C.S., J. Mat. Chem. C1, 4334 (2013).Google Scholar
Kim, D.S. and Lee, H.C., J. Appl. Phys. 112, 034504 (2012).CrossRefGoogle Scholar
Molaei, R., Bayati, R. and Narayan, J., Cryst. Growth Des. 13, 5459 (2013).CrossRefGoogle Scholar
Molaei, R., Bayati, M.R., Alipour, H.M., Nori, S. and Narayan, J., J. Appl. Phys. 113, 233708 (2013).CrossRefGoogle Scholar
Tsai, S.Y., Hon, M.H. and Lu, Y.M., Solid State Elect. 63, 37 (2011).CrossRefGoogle Scholar