Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:50:37.065Z Has data issue: false hasContentIssue false

Degradation of Co-Evaporated Perovskite Thin Films

Published online by Cambridge University Press:  28 January 2016

Congcong Wang*
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
Youzhen Li
Affiliation:
School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
Xuemei Xu
Affiliation:
School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
Benjamin Ecker
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
Chenggong Wang
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
Yongli Gao
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
Get access

Abstract

Methylammonium lead halide perovskites have been developed as highly promising materials to fabricate efficient solar cells in the past few years. We have investigated degradation of co-evaporated CH3NH3PbI3 films in ambient air, oxygen and water respectively using x-ray photoelectron spectroscopy (XPS), small angle x-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The CH3NH3PbI3 film has an excellent atomic ratio and crystallinity. XPS results indicate that the film is not sensitive to oxygen and dry air, while ambient and water exposures achieve similar effects. XRD further indicates a structural conversion to PbI2 and a drastic morphology change from smooth to rough is revealed by AFM and SEM. The experiment indicated that H2O plays a dominated role in the degradation of CH3NH3PbI3 films. The degradation can be characterized by almost complete removal of N, substantial reduction of I, residual of PbI2, C, O, and I compounds on the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baikie, T., Fang, Y. N., Kadro, J. M., Schreyer, M., Wei, F. X., Mhaisalkar, S. G., Grätzel, M., White, T. J., J. Mater. Chem. A 1, 56285641 (2013).CrossRefGoogle Scholar
Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C. G., Gao, Y., Huang, J., Energy Environ. Sci. 7, 2619 (2014).Google Scholar
Wang, C. G., Liu, X., Wang, C. C., Xiao, Z., Bi, C., Shao, Y., Huang, J., Gao, Y., J. Vac. Sci. Technol. B 33, 032401 (2015).CrossRefGoogle Scholar
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. and Herz, L. M., Adv. Mater. 26, 1584 (2014).Google Scholar
Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., Grätzel, M., Mhaisalkar, S., Sum, T. C., Nat. Mater. 13, 476 (2014).CrossRefGoogle Scholar
Bi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C. G., Gao, Y., Huang, J., J. Mater. Chem. A, 2, 18508 (2014).Google Scholar
Liu, X., Wang, C. G., Lyu, L., Wang, C. C., Xiao, Z., Bi, C., Huang, J., Gao, Y., Phys. Chem. Chem. Phys. 17, 896 (2015).Google Scholar
Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Gratzel, M. and Park, N. G., Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
Liu, M., Johnston, M. B., and Snaith, H. J., Nature 501, 395398 (2013).CrossRefGoogle Scholar
Zhou, H., Chen, Qi, Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z., You, J. B., Liu, Y., and Yang, Y., Science 345, 542546 (2014).CrossRefGoogle Scholar
Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J.; Il Seok, S., Science, 6, 12341237 (2015).Google Scholar
Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., Snaith, H. J., Nat. Commun. 4, 2885 (2013).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M., Nature 499, 316319 (2013).Google Scholar
You, J. B., Yang, Y.(Michael), Hong, Z., Song, Tze-Bin, Meng, L., Liu, Y. S., Jiang, C. Y., Zhou, H. P., Chang, W. H., Li, G., and Yang, Y., Appl. Phys. Lett. 105, 183902 (2014).Google Scholar
Niu, G., Li, W., Meng, F., Wang, L., Dong, H. and Qiu, Y., J. Mater.Chem. A 2, 705 (2014).CrossRefGoogle Scholar
Christians, J. A., Herrera, P. A. M., Kamat, P. V., J. Am. Chem. Soc. 137, 15301538 (2015).CrossRefGoogle Scholar
Yang, J., Siempelkamp, B. D., Liu, D., and Kelly, T. L., ACS Nano 9, 19551963 (2015).CrossRefGoogle Scholar
Niu, G., Guo, X., Wang, L., J. Mater. Chem. A, 3, 89708980 (2015).Google Scholar
Mosconi, E., Azpiroz, J. M., De Angelis, F., Chem. Mater. 27, 48854892 (2015).Google Scholar
Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y. and Huang, J., Appl. Phys. Lett. 105, 163508 (2014).Google Scholar
Liu, X., Wang, C. G., Wang, C. C., Irfan, I. and Gao, Y., Org. Elec. 17, 325 (2015).CrossRefGoogle Scholar
Wang, C. G., Wang, C. C., Liu, X., Kauppi, J., Shao, Y., Xiao, Z., Bi, C., Huang, J. and Gao, Y., Appl. Phys. Lett. 106, 111603 (2015).Google Scholar
Li, Y., Xu, X., Wang, C. G., Wang, C. C., Xie, F., Yang, J., Gao, Y., J. Phys. Chem. C. 119, 2399624002 (2015).CrossRefGoogle Scholar