Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T21:02:24.197Z Has data issue: false hasContentIssue false

Core-shell Nanoarchitectures for Lithium-Ion Energy Storage Applications

Published online by Cambridge University Press:  22 March 2016

Tomas M. Clancy*
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
James F. Rohan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Get access

Abstract

Multiphysics simulations (COMSOL) of core-shell nanoarchitectures show that they can operate at 3 times the C-rate of micron scale thin film materials while still accessing 90% of an additive free cathode oxide material. A high performance Ge anode DC sputtered onto a Cu nanotube current collector is characterised. Volume expansion of Ge is alleviated and mechanical stability is enhanced due to the Cu nanotubes current collector.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Doyle, M., Fuller, T. F. and Newman, J., J. Electrochem. Soc. 140 (6), 1526 (1993).Google Scholar
Zadin, V., Kasemagi, H., Aabloo, A. and Brandell, D., J. Power Sources 195 (18), 6218 (2010).Google Scholar
Hasan, M., Chowdhury, T. and Rohan, J. F., J. Electrochem. Soc. 157 (6), A682 (2010).Google Scholar
Graetz, J., Ahn, C. C., Yazami, R. and Fultz, B., J. Electrochem. Soc. 151 (5), A698 (2004).Google Scholar
Wang, D., Chang, Y.-L., Wang, Q., Cao, J., Farmer, D. B., Gordon, R. G. and Dai, H., J. Am. Chem. Soc. 126 (37), 11602 (2004).CrossRefGoogle Scholar
Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C. and Ryan, K. M., Nano Lett. 14 (2), 716 (2014).Google Scholar
Park, M.-H., Cho, Y., Kim, K., Kim, J., Liu, M. and Cho, J., Angew. Chem. Int. Edit. 50 (41), 9647 (2011).Google Scholar
Wang, J., Du, N., Zhang, H., Yu, J. and Yang, D., J. Mater. Chem. 22 (4), 1511 (2012).Google Scholar
Chowdhury, T., Casey, D. P. and Rohan, J. F., Electrochem. Commun. 11 (6), 1203 (2009).Google Scholar
Barth, S., Koleśnik, M. M., Donegan, K., Krstić, V. and Holmes, J. D., Chem. Mater 23 (14), 3335 (2011).Google Scholar
DiLeo, R. A., Frisco, S., Ganter, M. J., Rogers, R. E., Raffaelle, R. P. and Landi, B. J., J. Phys. Chem. C 115 (45), 22609 (2011).Google Scholar
Fan, S., Lim, L. Y., Tay, Y. Y., Pramana, S. S., Rui, X., Samani, M. K., Yan, Q., Tay, B. K., Toney, M. F. and Hng, H. H., J. Mater. Chem. A 1 (46), 14577 (2013)Google Scholar
Ho, V., Choi, W., Heng, C. and Ng, V., Mater. Phys. Mech. 4, 42 (2001).Google Scholar
Giri, P. K. and Dhara, S., J. Nanomater. 2012 (2012).Google Scholar
Laforge, B., Levan-Jodin, L., Salot, R. and Billard, A., J. Electrochem. Soc. 155 (2), A181 (2008).CrossRefGoogle Scholar