Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T01:19:06.275Z Has data issue: false hasContentIssue false

Bio-synthesis of BiVO4 Nanorods Using Extracts of Callistemon viminalis

Published online by Cambridge University Press:  02 April 2018

H.E.A. Mohamed*
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset, South Africa
B.T. Sone
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset, South Africa
M.S. Dhlamini
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset, South Africa
M. Maaza
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset, South Africa
*
Get access

Abstract

In this contribution we report on the synthesis of n-type Bismuth vanadate (BiVO4) nanorods prepared via the use of aqueous extracts of Callistemon viminalis. X-ray diffraction analysis confirmed the formation of highly crystalline monoclinic BiVO4 nanorods post annealing of the Bismuth vanadate precursor powder at 500 °C. Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy showed that BiVO4 nanorods have a high aspect ratio. Using UV-Vis absorption measurements the optical band gap of the nanorods is estimated to be 2.4 eV which makes the bio-synthesized BiVO4 powder a good candidate for sunlight driven photocatalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ke, D., Peng, T., Ma, L., Cai, P., and Dai, K.. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry, 48(11): 46854691, 2009.CrossRefGoogle Scholar
Shang, M., Wang, W., Sun, S., Ren, J., Zhou, L., and Zhang, L.. E_cient visible light-induced photocatalytic degradation of contaminant by spindle-like pani/bivo4. The Journal of Physical Chemistry C, 113 (47):2022820233, 2009.CrossRefGoogle Scholar
Zhou, L., Wang, W., and Zhang, L.. Ultrasonic-assisted synthesis of visible-light-induced bi 2 mo 6 (m=w, mo) photocatalysts. Journal of Molecular Catalysis A: Chemical, 268(1):195200, 2007.CrossRefGoogle Scholar
Li, H., Liu, G., and Duan, X., Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Materials Chemistry and Physics, 115(1), pp.913, 2009.CrossRefGoogle Scholar
Jiang, H., Dai, H., Meng, X., Zhang, L., Deng, J., Liu, y., and Au, C.T., Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 24(3), pp.449457, 2012.CrossRefGoogle ScholarPubMed
Liu, J., Wang, H., Wang, S., and Yan, H., Hydrothermal preparation of BiVO 4 powders. Materials Science and Engineering: B, 104(1), pp.3639, 2003.CrossRefGoogle Scholar
Zhou, L., Wang, W., and Zhang, l., Ultrasonic-assisted synthesis of visible-light-induced Bi 2MO 6 (M= W, Mo) photocatalysts. Journal of Molecular Catalysis A: Chemical, 268(1), pp.195200, 2007.CrossRefGoogle Scholar
Wang, M., Liu, Q., and Luan, H., Preparation, Characterization and photocatalytic property of Bismuth Vanadate Photocatalyst by Sol-Gel method. College of Environmental and Chemical Engineering, Shenyang. Aplplied Mechanics and Materials, 99-100, pp 13071311, 2011.Google Scholar
Thema, F., Manikandan, E., Dhlamini, M., and Maaza, M.. Green synthesis of zno nanoparticles via agathosma betulina natural extract. Materials Letters, 161:124127, 2015.CrossRefGoogle Scholar
Thovhogi, N., Diallo, A., Gurib-Fakim, A., and Maaza, M.. Nanoparticles green synthesis by hibiscus sabdariffa flower extract: Main physical properties. Journal of Alloys and Compounds, 647:392396, 2015.CrossRefGoogle Scholar
Diallo, A., Ngom, B., Park, E., and Maaza, M.. Green synthesis of zno nanoparticles by aspalathus linearis: Structural & optical properties. Journal of Alloys and Compounds, 646:425430, 2015.CrossRefGoogle Scholar
Sone, B.T., Diallo, A., Fuku, X., Gurib-Fakim, A., and Maaza, M.. Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics. Arabian Journal of Chemistry, 2017.CrossRefGoogle Scholar
Ismail, E., Khenfouch, M., Dhlamini, M., Dube, S., and Maaza, M.. Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. Journal of Alloys and Compounds,695: 36323638, 2017.CrossRefGoogle Scholar
Sone, B.T., Maaza, M. Room Temperature Green Synthesis of CdO Nanoparticles Using Aqueous Extracts of Callistemon Viminalis. J Nanomater Mol Nanotechnol 6(1), 2017Google Scholar
Ismail, E., Khenfouch, M., Dhlamini, M., Dube, S., and Maaza, M.. Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract. J Nanomater Mol Nanotechnol, 2017.Google Scholar
Diallo, A., Beye, A., Doyle, T., Park, E., and Maaza, M.. Green synthesis of co3o4 nanoparticles via aspalathus linearis: physical properties. Green Chemistry Letters and Reviews, 8(3-4):3036, 2015.CrossRefGoogle Scholar
Ismail, E., Khamlich, S., Dhlamini, M., and Maaza, M.. Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Advances, 6(90):8684386850, 2016.CrossRefGoogle Scholar
Thovhogi, N., Park, E., Manikandan, E., Maaza, M., and Gurib-Fakim, A.. Physical properties of cdo nanoparticles synthesized by green chemistry via hibiscus sabdariffa flower extract. Journal of Alloys and Compounds, 655:314320, 2016.CrossRefGoogle Scholar
Sone, B.T., Fuku, X.G., Maaza, M.. Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extracts. Int J Electrochem Sci 11(10):82048220, 2016.CrossRefGoogle Scholar
Diallo, A., Manikandan, E., Rajendran, V., and Maaza, M.. Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via aspalathus linearis. Journal of Alloys and Compounds, 681:561570, 2016.CrossRefGoogle Scholar
Vasantharaj, S., Sripriya, N., Shanmugavel, M., Manikandan, E., Gnanamani, A.,and Senthilkumar, P.. Surface active gold nanoparticles biosynthesis by new approach for bionanocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 2018CrossRefGoogle ScholarPubMed
Manikandan, E., Murugan, V., Kavitha, G., Babu, P., and Maaza, M.. Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties. Materials Letters,131: 225228, 2014CrossRefGoogle Scholar
Lokesh, K., Kavitha, G., Manikandan, E., Mani, G.K, Kaviyarasu, K., Rayappan, J. B. B, and Maaza, M.. Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sensors Journal,16(8): 2477—2483, 2016CrossRefGoogle Scholar
Z.Salem, M., Ali, H.M., El-Shanhorey, N.A., and Abdel-Megeed, A., Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pacific journal of tropical medicine, 6(10), pp.785791, 2013.CrossRefGoogle Scholar
Gawande, S. B. and Thakare, S. R.. Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation. International Nano Letters, 2(1):11, 2012.CrossRefGoogle Scholar
Sivakumar, V., Suresh, R., Giribabu, K., and Narayanan, V.. BiVO4 nanoparticles: Preparation, character- ization and photocatalytic activity. Cogent Chemistry, 1(1):10746–47, 2015.CrossRefGoogle Scholar
Abraham, S. D., David, S. T., Bennie, R. B., Joel, C., and Kumar, D. S.. Eco-friendly and green synthesis of bivo 4 nanoparticle using microwave irradiation as photocatalayst for the degradation of alizarinred s. Journal of Molecular Structure, 1113:174181, 2016.CrossRefGoogle Scholar
Byrappa, K., Chandrashekar, C., Basavalingu, B., LokanathaRai, K., Ananda, S., and Yoshimura, M.. Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal condi- tions. Journal of crystal growth, 306(1):94101, 2007CrossRefGoogle Scholar
Yu, J. and Kudo, A.. Hydrothermal synthesis of nano_brous bismuth vanadate. Chemistry letters, 34(6):850{851, 2005.CrossRefGoogle Scholar
Frost, R. L., Henry, D. A., Weier, M. L., and Martens, W.. Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (vo4) 3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7):722{732, 2006.CrossRefGoogle Scholar