Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T17:56:25.007Z Has data issue: false hasContentIssue false

Au(111)-supported Platinum Nanoparticles: Ripening and Activity

Published online by Cambridge University Press:  23 January 2017

Sarah Wieghold
Affiliation:
Chair of Physical Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Lea Nienhaus
Affiliation:
Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, IL 61801, U.S.A.
Armin Siebel
Affiliation:
Chair of Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Maximilian Krause
Affiliation:
Chair of Physical Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Patricia Wand
Affiliation:
Chair of Physical Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Martin Gruebele
Affiliation:
Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois, Urbana, IL 61801, U.S.A. Department of Physics, University of Illinois, Urbana, IL 61801, U.S.A.
Ueli Heiz
Affiliation:
Chair of Physical Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Friedrich Esch*
Affiliation:
Chair of Physical Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
Get access

Abstract

The recent spotlight on supported nanoparticles (NPs) has attracted attention in the field of catalysis and fuel cell technology. Supported NPs can be used as model catalysts to gain a fundamental understanding of the catalytic properties at the interface. Here, especially the wet-chemical preparation of platinum NPs in alkaline ethylene glycol is a powerful approach to synthesize stable particles with a narrow size distribution in the nanometer regime. We combine high resolution imaging by scanning tunneling microscopy with electrochemical characterization by cyclic voltammetry to gain insights into the underlying degradation mechanism of supported platinum NPs, paving the way toward a rational design of supported catalysts with controlled activity and stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wand, P.; Bartl, J. D.; Heiz, U.; Tschurl, M. and Cokoja, M., Journal of Colloid and Interface Science 478, 72 (2016).CrossRefGoogle Scholar
Pagliaro, M.; Pandarus, V.; Ciriminna, R.; Bėland, F. and Carà, P. D., ChemCatChem, 4, 432 (2012).Google Scholar
Durst, J.; Simon, C.; Hasche, F. and Gasteiger, H. A., J. Electrochem. Soc., 162, F190 (2014).Google Scholar
Gasteiger, H. A.; Panels, J. E. and Yan, S. G., J. Power Sources, 127, 162 (2004).Google Scholar
Schrader, I.; Warneke, J.; Neumann, S.; Grotheer, S.; Swane, A. A.; Kirkensgaard, J. J. K.; Arenz, M. and Kunz, S., J. Phys. Chem. C, 119, 17655 (2015).Google Scholar
Wang, Y.; Ren, J.; Deng, K.; Gui, L. and Tang, Y., Chem. Mat., 12, 1622 (2000).Google Scholar
Kunz, S.; Schreiber, P.; Ludwig, M.; Maturi, M. M.; Ackermann, O.; Tschurl, M. and Heiz, U., Phys. Chem. Chem. Phys., 15, 19253 (2013).Google Scholar
Speder, J.; Altmann, L.; Bäumer, M.; Kirkensgaard, J. J. K.; Mortensen, K. and Arenz, M., RSC Adv., 4, 14971 (2014).Google Scholar
Wilms, M.; Kruft, M.; Bermes, G. and Wandelt, K., Rev. Sci. Instrum., 70, 3641 (1999).Google Scholar
Cahan, B. D. and Villullas, H. M., J. Electroanal. Chem. Interfacial Electrochem., 307, 263 (1991).Google Scholar
Biegler, T.; Rand, D. A. J. and Woods, R., J. Electroanal. Chem. Interfacial Electrochem., 29, 269 (1971).Google Scholar
Carmichael, E. S. and Gruebele, M., J. Phys. Chem. C, 113, 4495 (2009).Google Scholar
Nienhaus, L.; Scott, G. E.; Haasch, R. T.; Wieghold, S.; Lyding, J. W. and Gruebele, M., J. Phys. Chem. C, 118, 13196 (2014).Google Scholar
Xiao, R.-F. and Ming, N.-B., Phys. Rev. E, 49, 4720 (1994).Google Scholar
Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T. and Kondo, T., J. Phys. Chem. B, 101, 7566 (1997).Google Scholar
Wolfschmidt, H.; Weingarth, D. and Stimming, U., ChemPhysChem, 11, 1533 (2010).CrossRefGoogle Scholar
Liu, Y.; Gokcen, D.; Bertocci, U. and Moffat, T. P., Science, 338, 1327 (2012).Google Scholar
Ostermayr, C. and Stimming, U., Surf. Sci., 631, 229 (2015).Google Scholar
Wolfschmidt, H.; Bussar, R. and Stimming, U., J. Phys. Condens. Matter, 20, 374127 (2008).CrossRefGoogle Scholar
Pedersen, M. Ø.; Helveg, S.; Ruban, A.; Stensgaard, I.; Lægsgaard, E.; Nørskov, J. K. and Besenbacher, F., Surf. Sci., 426, 395 (1999).Google Scholar
Costelle, L.; Järvi, T. T.; Räisänen, M. T.; Tuboltsev, V. and Räisänen, J., Appl. Phys. Lett., 98, 043107 (2011).Google Scholar
Costelle, L.; Räisänen, M. T.; Joyce, J. T.; Silien, C.; Johansson, L.-S.; Campbell, J. M. and Räisänen, J., J. Phys. Chem. C, 116, 22602 (2012).CrossRefGoogle Scholar
Duffe, S.; Gronhagen, N.; Patryarcha, L.; Sieben, B.; Yin, C.; von Issendorff, B.; Moseler, M. and Hovel, H., Nat. Nanotechnol., 5, 335 (2010).CrossRefGoogle Scholar