Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-25T09:58:03.288Z Has data issue: false hasContentIssue false

Application of the Electrophoretic Deposition Technique for the Development of Electrodes Containing a Catalyst Layer of Nanostructured Pt-Sn/C for DAFCs

Published online by Cambridge University Press:  19 October 2020

D. González-Quijano*
Affiliation:
Centro de Ciencias de la Ingeniería, Universidad Autónoma de Aguascalientes Campus Sur, Av. Prol. Mahatma Gandhi 6601, Col. El Gigante, Aguascalientes, Aguascalientes, México, C.P. 20340.
W.J. Pech-Rodríguez
Affiliation:
Universidad Politécnica de Victoria, Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, C.P. 87138, México.
L.E. Verduzco
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila, C.P. 25900, México
J.I. Escalante-García
Affiliation:
Ingeniería Metalúrgica e Ingeniería Cerámica, Cinvestav Unidad Saltillo.
G. Vargas-Gutiérrez
Affiliation:
Ingeniería Metalúrgica e Ingeniería Cerámica, Cinvestav Unidad Saltillo.
F.J. Rodríguez-Varela
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila, C.P. 25900, México
*
*Corresponding author, e-mail: diegoxjgq@gmail.com
Get access

Abstract

A catalyst layer of Pt-Sn/C (Pt:Sn 1:1 atomic ratio) was deposited on commercial carbon cloth electrodes by electrophoretic deposition (EPD). The Pt-Sn/C nanocatalyst was synthesized by the polyol method. Three current signals were applied: i) continuous direct current (CDC); ii) positive pulsed current (PPC); and iii) asymmetric alternating current (AAC). The chemical composition analysis showed the effect of the applied signal on species transferred onto the carbon cloth to form the catalyst layers. Evaluation by SEM confirmed the effect of deposition-signal on the morphology of the catalyst layer. The CDC signal formed spherical agglomerates with irregular distribution along with carbon fibers over the electrode, showing some cracks. A cross-cut view of the electrode showed that the catalyst penetrated the carbon cloth. Meanwhile, the PPC signal promoted a better deposition of the catalyst layer over the carbon cloth surface, with a thicker and more homogeneous rough layer than CDC. In contrast, the layer developed by the AAC signal showed a morphology similar to that by CDC, suggesting the formation of a layer with low metal loading. The cross-cut view of the AAC electrode showed the formation of a highly rough layer having large areas with limited contact with the carbon cloth fibers. The electro-catalytic activity of the electrodes for the Ethanol Oxidation Reaction (EOR) was studied in acid media. The CDC electrode showed an enhanced performance for the EOR by delivering the highest current density (272 mA mg-1Pt) with the more negative onset potential (341 mV) relative to the PPC and AAC electrodes.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chatterjee, M., Chatterjee, A., Ghosh, S., and Basumallick, I., Electrochim. Acta 54, 7299 (2009).CrossRefGoogle Scholar
Sieben, J.M. and Duarte, M.M.E., Int. J. Hydrogen Energy 37, 9941 (2012).CrossRefGoogle Scholar
Eom, K., Kim, G., Cho, E., Jang, J.H., Kim, H.J., Yoo, S.J., Kim, S.K., and Hong, B.K., Int. J. Hydrogen Energy 37, 18455 (2012).CrossRefGoogle Scholar
Hou, S., Chen, R., Zou, H., Shu, T., Ren, J., Li, X., and Liao, S., Int. J. Hydrogen Energy 41, 9197 (2016).CrossRefGoogle Scholar
Bayrakceken, A., Erkan, S., Turker, L., and Eroglu, I., Int. J. Hydrogen Energy 33, 165 (2008).CrossRefGoogle Scholar
Su, H.N., Zeng, Q., Liao, S.J., and Wu, Y.N., Int. J. Hydrogen Energy 35, 10430 (2010).CrossRefGoogle Scholar
Su, H., Bladergroen, B.J., Linkov, V., Pasupathi, S., and Ji, S., Int. J. Hydrogen Energy 36, 15081 (2011).Google Scholar
Saha, M.S., Gullá, A.F., Allen, R.J., and Mukerjee, S., Electrochim. Acta 51, 4680 (2006).CrossRefGoogle Scholar
González-Quijano, D., Pech-Rodríguez, W.J., Escalante-García, J.I., Vargas-Gutiérrez, G., and Rodríguez-Varela, F.J., Int. J. Hydrogen Energy 39, 16676 (2014).CrossRefGoogle Scholar
González-Quijano, D., Pech-Rodríguez, W.J., González-Quijano, J.A., Escalante-García, J.I., Vargas-Gutiérrez, G., Alonso-Lemus, I., and Rodríguez-Varela, F.J., Int. J. Hydrogen Energy 40, 17291 (2015).CrossRefGoogle Scholar
Chávez-Villanueva, A.F., Ramirez, Adriana M., Vargas-Gutiérrez, G., Torres, L.A., and Rodríguez-Varela, F.J., J. New Mater. Electrochem. Syst. 16, 171 (2013).CrossRefGoogle Scholar
Spinacé, E.V., Neto, A.O., and Linardi, M., J. Power Sources 129, 121 (2004).CrossRefGoogle Scholar
Rodríguez Varela, F.J. and Savadogo, O., Asia-Pacific J. Chem. Eng. 4, 17 (2009).CrossRefGoogle Scholar
Sieben, J.M. and Duarte, M.M.E., Int. J. Hydrogen Energy 36, 3313 (2011).CrossRefGoogle Scholar
Neto, A.O., Vasconcelos, T.R.R., Da Silva, R.W.R.V., Linardi, M., and Spinacé, E.V., J. Appl. Electrochem. 35, 193 (2005).CrossRefGoogle Scholar
Livshits, V. and Peled, E., J. Power Sources 161, 1187 (2006).CrossRefGoogle Scholar
Yan, S., Sun, G., Tian, J., Jiang, L., Qi, J., and Xin, Q., Electrochim. Acta 52, 1692 (2006).CrossRefGoogle Scholar
González-Quijano, D., Pech-Rodríguez, W.J., González-Quijano, J.A., Escalante-García, J.I., Morais, C., Napporn, T.W., and Rodríguez-Varela, F.J., ChemElectroChem 5, 3540 (2018).CrossRefGoogle Scholar
You, D.J., Kwon, K., Joo, S.H., Kim, J.H., Kim, J.M., Pak, C., and Chang, H., Int. J. Hydrogen Energy 37, 6880 (2012).CrossRefGoogle Scholar
Litster, S. and McLean, G., J. Power Sources 130, 61 (2004).CrossRefGoogle Scholar
Cavarroc, M., Ennadjaoui, A., Mougenot, M., Brault, P., Escalier, R., Tessier, Y., Durand, J., Roualdès, S., Sauvage, T., and Coutanceau, C., Electrochem. Commun. 11, 859 (2009).CrossRefGoogle Scholar
Benítez, R., Soler, J., and Daza, L., J. Power Sources 151, 108 (2005).CrossRefGoogle Scholar
Chartarrayawadee, W., Moulton, S.E., Li, D., Too, C.O., and Wallace, G.G., Electrochim. Acta 60, 213 (2012).CrossRefGoogle Scholar
Pech-Rodríguez, W.J., González-Quijano, D., Vargas-Gutiérrez, G., and Rodríguez-Varela, F.J., Int. J. Hydrogen Energy 39, 16740 (2014).CrossRefGoogle Scholar
Yu, P., Yan, J., Zhang, J., and Mao, L., Electrochem. Commun. 9, 1139 (2007).CrossRefGoogle Scholar
Pech-Rodríguez, W.J., González-Quijano, D., Vargas-Gutiérrez, G., and Rodríguez-Varela, F.J., ECS Trans. 58, 33 (2014).CrossRefGoogle Scholar
Chaisubanan, N. and Tantavichet, N., J. Alloys Compd. 559, 69 (2013).CrossRefGoogle Scholar
Cullity, B. and Stock, S., Elements of X-Ray Diffraction, 3th ed. (Addison-Wesley Publising Company, Inc., Massachusetts, 2001).Google Scholar
Zhu, M., Sun, G., and Xin, Q., Electrochim. Acta 54, 1511 (2009).CrossRefGoogle Scholar
Glass, D.E., Olah, G.A., and Prakash, G.K.S., J. Power Sources 352, 165 (2017).CrossRefGoogle Scholar
Darab, M., Barnett, A.O., Lindbergh, G., Thomassen, M.S., and Sunde, S., Electrochim. Acta 232, 505 (2017).CrossRefGoogle Scholar
Adilbish, G., Lee, J.-W., Jang, Y.-S., Lee, H.-G., and Yu, Y.-T., Int. J. Hydrogen Energy 39, 3381 (2014).CrossRefGoogle Scholar
Adilbish, G., Kim, J.-W., Lee, H.-G., and Yu, Y.-T., Int. J. Hydrogen Energy 38, 3606 (2013).CrossRefGoogle Scholar