Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T07:39:12.971Z Has data issue: false hasContentIssue false

Al+ implanted vertical 4H-SiC p-i-n diodes: experimental and simulated forward current-voltage characteristics

Published online by Cambridge University Press:  10 May 2016

Roberta Nipoti*
Affiliation:
CNR-IMM of Bologna, via Gobetti 101, I-4038 Bologna, Italy
Giovanna Sozzi
Affiliation:
University of Parma, Dipartimento di Ingegneria dell'Informazione, Parco Area della Scienza 181/A, I-43124 Parma, Italy.
Maurizio Puzzanghera
Affiliation:
University of Parma, Dipartimento di Ingegneria dell'Informazione, Parco Area della Scienza 181/A, I-43124 Parma, Italy.
Roberto Menozzi
Affiliation:
University of Parma, Dipartimento di Ingegneria dell'Informazione, Parco Area della Scienza 181/A, I-43124 Parma, Italy.
Get access

Abstract

The temperature dependence of the forward and reverse current voltage characteristics of circular Al+ implanted 4H-SiC p-i-n vertical diodes of various diameters, post implantation annealed at 1950 °C/5 min, have been used to obtain the thermal activation energies of the defects responsible of the generation and the recombination currents, as well as the area and the periphery current component of the current voltage characteristics. The former have values compatible with those of the traps associated to the carbon vacancy defect in 4H-SiC. The hypothesis that only these traps may justify the trend of the current voltage characteristics of the studied diodes has been tested by simulations in a Synopsys Sentaurus TCAD suite.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayedh, H. M., Bobal, V., Nipoti, R., Hallén, A., and Svensson, B. G., J. Appl. Phys. 115, 012005 (2014).Google Scholar
Son, N. T., Trinh, X. T., Løvlie, L. S., Svensson, B. G., Kawahara, K., Suda, J., Kimoto, T., Umeda, T., Isoya, J., Makino, T., Ohshima, T. and Janzén, E., Pys. Rev. Lett. 109, 187603 (2012).Google Scholar
Kleina, P. B., Shanabrook, B. V., Huh, S. W., et al. , Appl. Phys. Lett. 88, 052110 (2006).CrossRefGoogle Scholar
Synopsys-Sentaurus TCAD, accessed on March 23, 2016, http://www.synopsys.com/Tools/TCAD Google Scholar
SRIM2008 ion implantation simulation code, accessed on March 23, 2016, http://www.srim.org/ Google Scholar
CNR-IMM, accessed on March 23, 2016, https://www.bo.imm.cnr.it/site/?q=node/266 Google Scholar
Nath, A., Rao, Mulpuri V., Moscatelli, F., Puzzanghera, M., Mancarella, F. and Nipoti, R., IEEE proceedings “Ion Implantation Technology (IIT), 2014 20th International Conference on”, Portland, OR, USA, pp. 1–4.Google Scholar
Puzzanghera, M. and Nipoti, R., Mater. Sci. Forum (in press).Google Scholar
Koizumi, A., Suda, J. and Kimoto, T., J. Appl. Phys. 106, 013716 (2009).CrossRefGoogle Scholar
Persson, C., Lindefelt, U. and Sernelius, B. E., J. Appl. Phys. 86, 4419 (1999).Google Scholar
Ščajev, P, Gudelis, V, Jarašiūnas, K and Klein, P B, J. Appl. Phys. 108, 023705, 2010.CrossRefGoogle Scholar
Hatakeyama, T., Watanabe, T., Kushibe, M., et al. , Mater. Sci. Forum 433-436, 443 (2003).Google Scholar
Zhang, J., Storasta, L., Bergman, J. P., et al. , J. Appl. Phys. 93, 4708 (2003).CrossRefGoogle Scholar