Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-09T04:10:17.728Z Has data issue: false hasContentIssue false

Responsive Bilayered Hydrogel Actuators Assembled by Supramolecular Recognition

Published online by Cambridge University Press:  26 February 2018

Jing Chen
Affiliation:
Cixi Institute of Biomedical Engineering & Polymer and Composite Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
Jingli Yang
Affiliation:
Cixi Institute of Biomedical Engineering & Polymer and Composite Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
Guorong Gao
Affiliation:
Cixi Institute of Biomedical Engineering & Polymer and Composite Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
Jun Fu*
Affiliation:
Cixi Institute of Biomedical Engineering & Polymer and Composite Division, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo315201, China
*
Get access

Abstract

Macroscopic assembling of responsive hydrogels has been used to construct soft actuators that transform their shape upon external stimuli. It remains a challenge to establish a robust assembling interface between gels. Here, we demonstrate a fabrication of bilayered hydrogel actuators assembled by host-guest recognition at the interface. The supramolecular recognition enabled efficient, rapid, and robust macroscopic assembling of hydrogels, which was utilized to create gel bilayers that were actuated upon unbalanced swelling/deswelling.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ionov, L. Materials Today 2014, 17, 494.CrossRefGoogle Scholar
Calvert, P. Adv. Mater. 2009, 21, 743.CrossRefGoogle Scholar
Yasin, A.; Zhou, W.; Yang, H.; Li, H.; Chen, Y.; Zhang, X. Macromol. Rapid Commun. 2015, 36, 845.CrossRefGoogle Scholar
Haldorai, Y.; Shim, J.-J. New J. Chem. 2014, 38, 2653.CrossRefGoogle Scholar
Jabeen, S.; Chat, O. A.; Maswal, M.; Ashraf, U.; Rather, G. M.; Dar, A. A. Carbohydr Polym 2015, 133, 144.CrossRefGoogle Scholar
Kakuta, T.; Takashima, Y.; Harada, A. Macromolecules 2013, 46, 4575.CrossRefGoogle Scholar
Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Nat. Commun. 2012, 3, 1270.CrossRefGoogle Scholar
Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Nat. Commun. 2012, 3, 603.CrossRefGoogle Scholar
Morales, D.; Palleau, E.; Dickey, M. D.; Velev, O. D. Soft Matter 2014, 10, 1337.CrossRefGoogle Scholar
Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Angew. Chem. Int. Ed. 2011, 50, 6254.CrossRefGoogle Scholar
Ma, C.; Li, T.; Zhao, Q.; Yang, X.; Wu, J.; Luo, Y.; Xie, T. Adv. Mater. 2014, 26, 5665.CrossRefGoogle Scholar
de Silva, U. K.; Lapitsky, Y. ACS Appl. Mater. Interfaces 2016, 8, 29015.CrossRefGoogle Scholar
Wu, Z. L.; Moshe, M.; Greener, J.; Therien-Aubin, H.; Nie, Z.; Sharon, E.; Kumacheva, E. Nat. Commun. 2013, 4, 1586.CrossRefGoogle Scholar
Liu, S. H.; Gao, G. R.; Xiao, Y.; Fu, J. J. Mater. Chem. B. 2016, 4, 3239.Google Scholar
Li, J. H.; Xu, Z. X.; Xiao, Y.; Gao, G. R.; Chen, J.; Yin, J. B.; Fu, J. J. Mater. Chem. B. 2018, DOI: 10.1039/C7TB02904G, in press.Google Scholar
Kang, Y.; Zhou, L.; Li, X.; Yuan, J. J. Mater. Chem. 2011, 21, 3704.CrossRefGoogle Scholar
Liu, Y.-Y.; Fan, X.-D.; Gao, L. Macromol. Biosci. 2003, 3, 715.CrossRefGoogle Scholar
Zhou, Y.; Guo, Z.; Zhang, Y.; Huang, W.; Zhou, Y.; Yan D. Macromol. Biosci. 2009, 9, 1090.CrossRefGoogle Scholar