Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mzfmx Total loading time: 1.459 Render date: 2022-08-19T08:42:55.421Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES

Published online by Cambridge University Press:  09 December 2019

Amber R. Mason
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Stephanie M. Thornber
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Martin C. Stennett
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Laura J. Gardner
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Dirk Lützenkirchen-Hecht
Affiliation:
Fakultät 4 - Physik, Bergische Universität Wuppertal, Gaußstraße 20, 42097 Wuppertal, Germany
Neil C. Hyatt*
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
Get access

Abstract

A zirconolite glass-ceramic material is a candidate wasteform for immobilisation of chlorine contaminated plutonium residues, in which plutonium and chlorine are partitioned to the zirconolite and aluminosilicate glass phase, respectively. A preliminary investigation of chlorine speciation was undertaken by analysis of Cl K-edge X-ray Absorption Near Edge Spectroscopy (XANES), to understand the incorporation mechanism. Cl was found to be speciated as the Cl- anion within the glass phase, according to the characteristic chemical shift of the X-ray absorption edge. By comparison with Cl K-edge XANES data acquired from reference compounds, the local environment of the Cl- anion is most closely approximated by the mineral marialite, in which Cl is co-ordinate to 4 x Na and/or Ca atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hyatt, N.C., Energy Policy, 101, 303 (2017).10.1016/j.enpol.2016.08.033CrossRefGoogle Scholar
Nuclear Decommissioning Authority, 2014. Progress on approaches to the management of separated plutonium, Position Paper, January 2014.Google Scholar
Office of Nuclear Regulation, 2014. Annual Civil Plutonium and Uranium Figures as of 31 December 2014.Google Scholar
Maddrell, E., Thornber, S., Hyatt, N.C., J. Nucl. Mater., 456 ,461 (2015)10.1016/j.jnucmat.2014.10.010CrossRefGoogle Scholar
Thornber, S., Heath, P.G., da Costa, G.P., Stennett, M.C., Hyatt, N.C., J. Nucl. Mater., 485 (2017) 253.10.1016/j.jnucmat.2016.12.028CrossRefGoogle Scholar
Thornber, S., Heath, P., Maddrell, E., Stennett, M.C., Hyatt, N.C., MRS Adv., 1, 63 (2017).Google Scholar
Thornber, S.M., Stennett, M.C., Vance, E.R., Chavra, D.T., Watson, I., Jovanovic, M., Davis, J., Gregg, D., Hyatt, N.C., MRS Adv., 3, 1065 (2018).10.1557/adv.2018.109CrossRefGoogle Scholar
Webb, K., Taylor, R., Campbell, C., Carrott, M., Gregson, C., Hobbs, J., Livens, F., Maher, C., Orr, R., Sims, H., Steele, H., and Sutherland-Harper, S., ACS Omega, 4, 12524 (2019).10.1021/acsomega.9b00719CrossRefGoogle Scholar
Evans, K.A., Mavrogenes, J.A., O’Neill, H.S., Keller, N.S., Jang, L.Y., Geochem. Geophys. Geosyst., 9, Q10003 (2008).Google Scholar
Webster, J.D., Chem. Geol., 210 ,33 (2004).10.1016/j.chemgeo.2004.06.003CrossRefGoogle Scholar
McKeown, D.A., Gan, H., Pegg, I.L., Stolte, W.C., Demchenko, I.N., J. Nucl. Mater., 408, 236 (2011).10.1016/j.jnucmat.2010.11.035CrossRefGoogle Scholar
Frahm, R., Wagner, R., Herdt, A., Lützenkirchen-Hecht, D., J. Phys.: Conf. Ser., 190 ,012040 (2009).Google Scholar
Ravel, B. and Newville, M., J. Synch. Res., 12, 537 (2005).10.1107/S0909049505012719CrossRefGoogle Scholar
Thornber, S.M., The Development of Zirconolite Glass-Ceramics for the Disposition of Actinide Wastes, PhD Thesis, The University of Sheffield, (2018).Google Scholar
Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, 2nd Edition, Butterworth-Heinemann, (1997).Google Scholar
Sokolova, E., Hawthorne, F.C., Can. Miner., 46, 1527 (2008).CrossRefGoogle Scholar
Wyckoff, R.G.W., Crystal Structures, 1, 252 (1963).Google Scholar
Hassan, I., Antao, S.M., Parise, J.B., Am. Min. 89, 259 (2004).CrossRefGoogle Scholar
Sandland, T.O., Du, L.S., Stebbins, J.F., Webster, J.D., Geochim. Cosmochim. Acta, 68, 5059 (2004).10.1016/j.gca.2004.07.017CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *