Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.455 Render date: 2021-07-25T01:06:01.960Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Optoelectronic and Electronic Properties of Tetracyanoindane for Chemical Doping of Organic Semiconductors

Published online by Cambridge University Press:  19 July 2019

Jenna Crawford
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA23504, USA Department of Biology, Norfolk State University, Norfolk, VA23504, USA
Harold O. Lee III
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA23504, USA
Sam-Shajing Sun
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, VA23504, USA PhD Program in Materials Science and Engineering, Norfolk State University, Norfolk, VA23504, USA Department of Chemistry, Norfolk State University, Norfolk, VA23504, USA
Corresponding
E-mail address:
Get access

Abstract

Chemical doping of organic semiconductors is a common technique used to increase the performance numerous organic electronic and optoelectronic devices. Tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) is one of the most widely known p-dopants having the properties necessary to act as a strong electron acceptor. Despite its strong electron accepting abilities, F4-TCNQ is extremely expensive, making it less than ideal for large-area applications. Here, we introduce a small molecule called Tetracyanoindane (TCI) as a potential p-dopant. Widely known for its role in the field of non-linear optics, its high polarizability arises from the addition of four cyano-groups, which are electron withdrawing groups. The four cyano-groups are also seen in the F4-TCNQ molecule and contributes to the withdrawing strength alongside the four fluorine atoms present. We hypothesize that TCI could have similar accepting strength to F4-TCNQ and could potentially replace it as a cheaper alternative. In this study, Cyclic Voltammetry (CV), UV-Visible-Near Infrared Spectroscopy (UV/Vis/NIR), Photoluminescence (PL), Current-Voltage (IV) measurements analysis was conducted to compare the accepting strength of TCI and F4-TCNQ. Then, the two molecules were added to Poly-3-hexy-thiophene (P3HT) to observe how readily they dope the organic semiconductor.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Salzmann, I., Heimel, G., Oehzelt, M., Winkler, S., and Koch, N., Acc. Chem. Res. 49, 370 (2016).CrossRefGoogle Scholar
Kumar, S., Kumar, M., Rathi, S., Yadav, A., Upadhyaya, A., Gupta, S.K., and Singh, A., AIP Conf. Proc. 1953, (2018).Google Scholar
Müller, L., Nanova, D., Glaser, T., Beck, S., Pucci, A., Kast, A.K., Schröder, R.R., Mankel, E., Pingel, P., Neher, D., Kowalsky, W., and Lovrincic, R., Chem. Mater. 28, 4432 (2016).CrossRefGoogle Scholar
Kim, H., Rao, B.A., and Son, Y.-A., Text. Color. Finish. 25, 89 (2013).CrossRefGoogle Scholar
Gao, J., Stein, B.W., Thomas, A.K., Garcia, J.A., Yang, J., Kirk, M.L., and Grey, J.K., J. Phys. Chem. C 119, 16396 (2015).CrossRefGoogle Scholar
Gao, J., Niles, E.T., and Grey, J.K., J. Phys. Chem. Lett. 4, 2953 (2013).CrossRefGoogle Scholar
Li, J., Zhang, G., Holm, D.M., Jacobs, I.E., Yin, B., Stroeve, P., Mascal, M., and Moulé, A.J., Chem. Mater. 27, 5765 (2015)CrossRefGoogle Scholar
Scholes, D.T., Hawks, S.A., Yee, P.Y., Wu, H., Lindemuth, J.R., Tolbert, S.H., and Schwartz, B.J., J. Phys. Chem. Lett. 6, 4786 (2015).CrossRefGoogle Scholar
Lee, H. O. III and Sun, S.-S., AIMS Mater. Sci. 5, 479 (2018).Google Scholar
Méndez, H., Heimel, G., Winkler, S., Frisch, J., Opitz, A., Sauer, K., Wegner, B., Oehzelt, M., Röthel, C., Duhm, S., Többens, D., Koch, N., and Salzmann, I., Nat. Commun. 6, (2015).CrossRefGoogle Scholar
Komarudin, D., Morita, A., Osakada, K., and Yamamoto, T., Polym. J. 30, 860 (1998).CrossRefGoogle Scholar
Li, G., Shrotriya, V., Huang, J., Yao, Y., and Yang, Y., SPIE Newsroom 3 (2006).Google Scholar
Chen, T.A., Wu, X., and Rieke, R.D., J. Am. Chem. Soc. 117, 233 (1995).CrossRefGoogle Scholar
Enengl, C., Enengl, S., Pluczyk, S., Havlicek, M., Lapkowski, M., Neugebauer, H., and Ehrenfreund, E., ChemPhysChem 17, 3830 (2016).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optoelectronic and Electronic Properties of Tetracyanoindane for Chemical Doping of Organic Semiconductors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optoelectronic and Electronic Properties of Tetracyanoindane for Chemical Doping of Organic Semiconductors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optoelectronic and Electronic Properties of Tetracyanoindane for Chemical Doping of Organic Semiconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *