Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-m7vrx Total loading time: 0.397 Render date: 2022-12-08T15:42:59.658Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Multilayer-Structured Non-leaded Metal/Polymer Composites for Enhanced X-ray Shielding

Published online by Cambridge University Press:  17 April 2018

Seongeun Park
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea08826
Hoyoun Kim
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea08826
Yoonkwan Kim
Affiliation:
LG Care Co., Moonjiro 188, Yousungku, Daejon, Korea34122
Eunhee Kim
Affiliation:
Department of Nuclear Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea08826
Yongsok Seo*
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea08826
*
* Corresponding Author : ysseo@snu.ac.kr (Y.S.)
Get access

Abstract

Polymer-non-leaded metal (tin, bismuth-tin (BiSn) alloy, and tungsten) composites were prepared to investigate the effectiveness of their X-ray shielding. Films of the composites were found to exhibit excellent X-ray shielding due to the uniform dispersion of metal particles in the polymer matrix, as were fabrics impregnated with the BiSn alloy. The fabricated composites effectively absorb penetrating photons. The preparation of composites with a uniform dispersion and a multilayered structure can limit the formation of pin holes. Multilayered BiSn composites exhibit significantly enhanced shielding. The lamination of a tungsten composite film or a BiSn composite film onto a BiSn-coated layered sheet results in better and more uniform shielding. Thus non-leaded BiSn metal-polymer composites can be used in X-ray shielding applications instead of the lead. One advantage that metal BiSn has over tungsten is its low melting temperature, which means that it can be processed in a normal extruder or in internal mixers such as those used in polymer processing.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

These authors contributed equally.

References

Nambiar, S. and Yeow, J. T. W., ACS Appl. Mater. Interf., 4, 5717 (2012,)CrossRefGoogle Scholar
Kim, Y., Park, S., and Seo, Y., Ind. Eng. Chem. Res., 54, 5968 (2015)CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., Zhang, W., Nucl. Instrum. Methods Phys. Res. 356-357, 88 (2015)Google Scholar
Martin, A. and Harbison, S. A., An Introduction to Radiation Protection, 6th ed., (CRC Press, London, UK, 2012).Google Scholar
Turner, J. E., Atoms, Radiation, and Radiation Protection, 6th ed., (CPI, London, U.K., 2012).Google Scholar
Maghrabi, H. A., Vijayan, A., Deb, P. and Wang, L., Textile Res. J., 86(6), 649 (2016)CrossRefGoogle Scholar
Kaur, K., Singh, K. J. and Anand, V., Radiat. Phys. Chem. 120, 63 (2016)CrossRefGoogle Scholar
Pulford, S. and Fergusson, M. J. Textile Institute, 107(12), 1610 (2016)CrossRefGoogle Scholar
Hopper, K. D., King, S. H., Lobell, M. E., Ten Have, T. R., and Weaver, J. S., Radiology, 205, 853 (1997)CrossRefGoogle Scholar
Yue, K., Luo, W., Dong, X., Wang, C., Wu, G., Jiang, M. and Zha, Y., Radiat. Prot. Dosimetry. 133, 256, (2009)CrossRefGoogle Scholar
Nambiar, S., Osei, E. K. and Yeow, J.T.W., J. Appl. Polym. Sci. 4939 (2013)Google Scholar
Oh, K., Huan ChuaC, Wei C, Wei, Park, S. E., Kim, J., Kwak, S. J., Kim, S. and Seo Macromolecular, Y. Research, 23(3), 265 (2015)Google Scholar
Jennings, R. J., Medical Physics, 15, 588 (1988)CrossRefGoogle Scholar
Ju, S. G., Ahn, Y. C., Huh, S. J., Yeo, I. J., Med. Phys., 29, 351 (2002)CrossRefGoogle Scholar
Robar, J. L., Clark, B. G., Med. Phys. 26, 2144 (1999)CrossRefGoogle Scholar
Schnohr, C.S. and Ridgway, M.C. (eds), Chapter 1 in X-Ray Absorption Spectroscopy of Semiconductors (Springer & Verlag, Heidelberg, 2015)Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multilayer-Structured Non-leaded Metal/Polymer Composites for Enhanced X-ray Shielding
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Multilayer-Structured Non-leaded Metal/Polymer Composites for Enhanced X-ray Shielding
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Multilayer-Structured Non-leaded Metal/Polymer Composites for Enhanced X-ray Shielding
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *