Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.279 Render date: 2021-09-20T00:38:03.201Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Instant release fractions for 14C, 60Co, and 125Sb from irradiated Zircaloy oxide film

Published online by Cambridge University Press:  27 December 2019

Tomofumi Sakuragi*
Affiliation:
Radioactive Waste Management Funding and Research Center, Akashicho 6-4, Chuo city, Tokyo, 104-0044, Japan
Yu Yamashita
Affiliation:
Toshiba Energy Systems & Solutions Corporation, Ukishimacho 4-1, Kawasaki-ku, Kawasaki city, 210-0862, Japan
*Corresponding
Get access

Abstract

The oxide films formed on spent fuel claddings are regarded as a potential source of the instantaneous release of radionuclides, such as 14C, after waste disposal. We investigated the instant release fraction using the irradiated oxide exfoliated from a Zircaloy-2 water rod, whose bundle burnup was 53.0 GWd/MTU. We performed a rapid leaching test in a dilute NaOH solution (pH of 12.5) for 10 min in an ultrasonic bath to ensure the release of radionuclides. The activity ratios of the leached amount to the total amount for 14C, 60Co, and 125Sb were extremely low at approximately 10-4 to 10-3, among which the maximum value was 2.65 × 10-3 for 125Sb. These ratios were higher than that predicted from the thermodynamic solubility of ZrO2, i.e., less than 10-6. However, given the low ratios, it is too conservative to regard the inventory of all radionuclides in the Zircaloy oxide as instantaneous release. A small part of the released 14C was found as volatile species.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Federation of Electric Power Companies (FEPC) and Japan Atomic Energy Agency (JAEA). Second progress report on research and development for TRU waste disposal in Japan (2007).Google Scholar
The Nuclear Waste Management Organization of Japan (NUMO), NUMO Safety Case, NUMO-TR-18-03 (2018). (in Japanese)Google Scholar
Yamaguchi, T., Tanuma, S., Yasutomi, I., Nakayama, T., Tanabe, H., Katsurai, K., Kawamura, W., and Maeda, K., Proc. ASME 7th International Conference on Environmental Remediation and Radioactive Waste Management, Sep. 26-30, Nagoya, Japan (1999).Google Scholar
Guenther, R. J., Blahnik, D. E., Thomas, L. E., Baldwin, D. L., and Mendel, J. E., Proc. Spectrum 90 Conference, Sept. 30-Oct. 3, Knoxville, TN (1990).Google Scholar
Sakuragi, T., Tanabe, H., Hirose, E., Sakashita, A. and Nishimura, T., Proc. ASME 15th International Conference on Environmental Remediation and Radioactive Waste Management, Sep. 8-12, Brussels, Belgium (2013).Google Scholar
Sakuragi, T., Yamashita, Y., Akagi, M. and Takahashi, R., Procedia Chem 21, 341-348 (2016).10.1016/j.proche.2016.10.048CrossRefGoogle Scholar
Japan Nuclear Energy Safety Organization (JNES), Verification Program of BWR 9×9 Fuel (2007) (in Japanese).Google Scholar
Yamashita, Y., Tanabe, H., Sakuragi, T., Takahashi, R., and Sasoh, M., Mater Res Soc Symp Proc 1665, 187-194 (2014).10.1557/opl.2014.645CrossRefGoogle Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-105. PNL-5109-105, Pacific Northwest Laboratory, Richland, WA (1991).Google Scholar
Barner, J. O., ATM-101. PNL-5109 Rev.1, Pacific Northwest Laboratories, Richland, WA (1985).Google Scholar
Wilson, C. N., HEDL-TME 85-22, Westinghouse Hanford Company, Richland, WA (1987).Google Scholar
Van Konynenburg, R. A., Smith, C. F., Culham, H. W., and Smith, H. D., Mater Res Soc Symp Proc 84, 185-196 (1987).10.1557/PROC-84-185CrossRefGoogle Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-103. PNL-5109-103, Pacific Northwest Laboratory, Richland, WA (1988).Google Scholar
Guenther, R. J., Blahnik, D. E., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-104. PNL-5109-104, Pacific Northwest Laboratory, Richland, WA (1991).Google Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., and Thornhill, C. K., ATM-106. PNL-5109-106, Pacific Northwest Laboratory, Richland, WA (1988).Google Scholar
Bleier, A., Neeb, K. H., Kroebel, R., and Wiese, H. W., Proc. International Conference on Nuclear Fuel Reprocessing and Waste Management, Aug. 23-27, Paris, France (1987).Google Scholar
Herm, M., Dagan, R., González-Robles, E., Müller, N., and Metz, V., MRS Adv 3, 1031-1037 (2018).10.1557/adv.2018.274CrossRefGoogle Scholar
Bucur, C., Fulger, M., Florea, I., and Tudose, A., Radiocarbon 60, 1773-1786 (2018).10.1017/RDC.2018.132CrossRefGoogle Scholar
Ekberg, C., Kallvenius, G., Albinsson, Y., and Brown, P. L., J Solution Chem 33, 47-79 (2004).10.1023/B:JOSL.0000026645.41309.d3CrossRefGoogle Scholar
Brown, P. L., Curti, E., Grambow, B., and Ekberg, C., “Chemical Thermodynamics of Zirconium”, Chemical Thermodynamics vol.8, ed. et al. (Elsevier, 2005).Google Scholar
Kobayashi, T., Sasaki, T., Takagi, I., and Moriyama, H., J Nucl Sci Technol 44, 90 (2007).10.1080/18811248.2007.9711260CrossRefGoogle Scholar
Rai, D., Kitamura, A., Altmaier, M., Rosso, K. M., Sasaki, T., and Kobayashi, T., J Solution Chem 47, 855-891 (2018).10.1007/s10953-018-0766-4CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Instant release fractions for 14C, 60Co, and 125Sb from irradiated Zircaloy oxide film
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Instant release fractions for 14C, 60Co, and 125Sb from irradiated Zircaloy oxide film
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Instant release fractions for 14C, 60Co, and 125Sb from irradiated Zircaloy oxide film
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *