Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-r9vz2 Total loading time: 0.229 Render date: 2021-08-05T18:27:18.785Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Hydrogenation Dynamics of Biphenylene Carbon (Graphenylene) Membranes

Published online by Cambridge University Press:  28 February 2017

Vinicius Splugues
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Federal do ABC, Santo André-SP, 09210-580, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Corresponding
E-mail address:
Get access

Abstract

The advent of graphene created a revolution in materials science. Because of this there is a renewed interest in other carbon-based structures. Graphene is the ultimate (just one atom thick) membrane. It has been proposed that graphene can work as impermeable membrane to standard gases, such argon and helium. Graphene-like porous membranes, but presenting larger porosity and potential selectivity would have many technological applications. Biphenylene carbon (BPC), sometimes called graphenylene, is one of these structures. BPC is a porous two-dimensional (planar) allotrope carbon, with its pores resembling typical sieve cavities and/or some kind of zeolites. In this work, we have investigated the hydrogenation dynamics of BPC membranes under different conditions (hydrogenation plasma density, temperature, etc.). We have carried out an extensive study through fully atomistic molecular dynamics (MD) simulations using the reactive force field ReaxFF, as implemented in the well-known Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Our results show that the BPC hydrogenation processes exhibit very complex patterns and the formation of correlated domains (hydrogenated islands) observed in the case of graphene hydrogenation was also observed here. MD results also show that under hydrogenation BPC structure undergoes a change in its topology, the pores undergoing structural transformations and extensive hydrogenation can produce significant structural damages, with the formation of large defective areas and large structural holes, leading to structural collapse.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., Nano Lett. 8, 2458 (2008).CrossRef
Brunetto, G., Autreto, P. A. S., Machado, L. D., Santos, B. I., Dos Santos, R. P. B. e Galvao, D. S., J. Phys. Chem. C 116, 12810 (2012).CrossRef
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B. e Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRef
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRef
Withers, F., Dubois, M., and Savchenko, A. K., Phys. Rev. B 82, 73403 (2010).CrossRef
Franck, I. W., Tanenbaum, D. M., van der Zende, A. M., and McEuen, P. L., J. Vaccum Sci. & Technol. B 25, 2558 (2007).CrossRef
Faccio, R., Denis, P. A., Pardo, H., Goyenola, C., and Mombru, A. W., J. Phys. Cond. Mat. 21, 285304 (2009).CrossRef
Baughman, R. H., Eckhardt, H. e Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRef
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S. e Baughman, R. H., Phys. Rev. B 68, 035430 (2004).CrossRef
Brunetto, G. and Galvao, D. S., MRS Proc. 1658, mrsf13-1658-rr07-20 (2014).
Perim, E., Paupitz, R., Autreto, P. A. S., and Galvao, D. S., J. Phys. Chem. C118, 23670 (2014).
Paupitz, R., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., and Galvao, D. S., Nanotechnology 24, 035706 (2013).CrossRef
Casewit, C. J., Colwell, K. S. e Rappé, A.K., J. Am. Chem. Soc. 114, 10035 (1992).CrossRef
Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Philips, J., Shinozaki, A., Varadarajan, K. e Shulten, Klaus, J. Comp. Phys. 151, 283 (1999).CrossRef
van Duin, A. C. T., Dasgupta, S., Lorant, F. e Goddard, W. A. III, J. Phys. Chem. A. 105, 9396 (2001).CrossRef
Srinivasan, S. G., van Duin, A. C. T. and Ganesh, P., J. Phys. Chem. A. 119, 571 (2015).CrossRef
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRef
Martínez, L., J. Comp. Chem. 30, 2157 (2009).CrossRef
Psofogiannakis, G. M. and Froudakis, G. E., J. of Phys. Chem. C, 116(36):19211 (2012).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrogenation Dynamics of Biphenylene Carbon (Graphenylene) Membranes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hydrogenation Dynamics of Biphenylene Carbon (Graphenylene) Membranes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hydrogenation Dynamics of Biphenylene Carbon (Graphenylene) Membranes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *