Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T21:08:36.196Z Has data issue: false hasContentIssue false

High Strength Conductors and Structural Materials for High Field Magnets

Published online by Cambridge University Press:  15 April 2016

Ke Han
Affiliation:
Florida State Univ, National High Magnetic Field Laboratory, Tallahassee, FL, United States, U.S.A.
Rongmei Niu*
Affiliation:
Florida State Univ, National High Magnetic Field Laboratory, Tallahassee, FL, United States, U.S.A.
Jun Lu
Affiliation:
Florida State Univ, National High Magnetic Field Laboratory, Tallahassee, FL, United States, U.S.A.
Vince Toplosky
Affiliation:
Florida State Univ, National High Magnetic Field Laboratory, Tallahassee, FL, United States, U.S.A.
*
Get access

Abstract

One important approach to increasing High magnetic fields (HMF) beyond what is now possible is to improve the properties of various composite materials used as both conductors and structural support. Typical conductors for high field magnets are Cu-based metal-metal composites. To achieve high mechanical strength, these composites are fabricated by cold deformation, which introduces high densities of interfaces along with lattice distortions. During the operation of a magnet, mechanical load, high magnetic field, extreme temperatures and other stressors are imposed on the materials, causing them to be further “processed”. The composite conductors in a magnet, for example, may undergo high temperatures, which reduce lattice distortions or soften the material. At the same time, HMF may increase lattice distortion, leading to a complex change in interface characteristics. Both the mechanical properties of the conductors, like the tensile and yield strength, and the electric conductivity of the composites are closely connected to changes in lattice distortion and interface density. Understanding these changes helps us to assure that materials can operate in optimized conditions during most of magnets’ service life. Maximizing service life is critical, given the high cost of building and operating high field magnets. The goal of this paper is to 1) show our understanding of changes that occur in the properties of selected materials during the fabrication and under HMF and 2) to discuss how those changes relate to the microstructure of these materials and consequently to the service life of high field magnets.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Han, K., Ultrafine Grained Materials IV (2006) 473480.Google Scholar
Han, K., Baca, A., Coe, H., Embury, J., Kihara, K., Lesch, B., Li, L., Schillig, J., Sims, J., Van Sciver, S., Schneider-Muntau, H.J., Ieee Transactions on Applied Superconductivity 10 (2000) 12771280.CrossRefGoogle Scholar
Painter, T.A., Adkins, T., Bai, H.Y., Bird, M.D., Bole, S., Cantrell, K., Chen, J.P., Dixon, I.R., Ehmler, H., Gavrilin, A., Han, K., Lu, J., Smeibidl, P., Walsh, R., Weijers, H.W., Xu, T., Zhai, Y.H., Ieee Transactions on Applied Superconductivity 20 (2010) 692695.CrossRefGoogle Scholar
Sims, J.R., Schillig, J.B., Boebinger, G.S., Coe, H., Paris, A.W., Gordon, M.J., Pacheco, M.D., Abeln, T.G., Hoagland, R.G., Mataya, M.C., Han, K., Ishmaku, A., Ieee Transactions on Applied Superconductivity 12 (2002) 480483.CrossRefGoogle Scholar
Swenson, C.A., Gavrilin, A.V., Han, K., Walsh, R.P., Schneider-Muntau, H.J., Rickel, D.G., Schillig, J.B., Ammerman, C.N., Sims, J.R., Ieee Transactions on Applied Superconductivity 16 (2006) 16501655.CrossRefGoogle Scholar
Swenson, C.A., Marshall, W.S., Miller, E.L., Pickard, K.W., Gavrilin, A.V., Han, K., Schneider-Muntau, H.J., Ieee Transactions on Applied Superconductivity 14 (2004) 12331236.CrossRefGoogle Scholar
Besterci, M., Velgosova, O., Ivan, J., Hajovska, Z., Sulleiova, K., Kovove Materialy-Metallic Materials 51 (2013) 383387.CrossRefGoogle Scholar
Li, L., Rovang, D., Lesch, B., Pernambuco-Wise, P., Schneider-Muntau, H.J., Ieee Transactions on Applied Superconductivity 10 (2000) 530533.CrossRefGoogle Scholar
Solomon, R.R., Troxell, J.D., Nadkami, A.V., Wolfe, F., 17th Ieee/Npss Symposium on Fusion Engineering, Vols 1 and 2 (1998) 853857.Google Scholar
Solomon, R.R., Troxell, J.D., Nadkarni, A.V., Journal of Nuclear Materials 233 (1996) 542546.CrossRefGoogle Scholar
Han, K., Embury, J.D., Petrovic, J.J., Weatherly, G.C., Acta Materialia 46 (1998) 46914699.CrossRefGoogle Scholar
Zuo, X., Han, K., Zhao, C., Niu, R., Wang, E., Materials Science and Engineering: A 619 (2014) 319327.CrossRefGoogle Scholar
Zuo, X.W., Han, K., Zhao, C.C., Niu, R.M., Wang, E.G., Journal of Alloys and Compounds 622 (2015) 6972.CrossRefGoogle Scholar
Cui, B.Z., Xin, Y., Han, K., Scripta Materialia 56 (2007) 879882.CrossRefGoogle Scholar
Deng, L.P., Han, K., Hartwig, K.T., Siegrist, T.M., Dong, L.Y., Sun, Z.Y., Yang, X.F., Liu, Q., Journal of Alloys and Compounds 602 (2014) 331338.CrossRefGoogle Scholar
Deng, L.P., Han, K., Yang, X.F., Sun, Z.Y., Liu, Q., Rare Metal Materials and Engineering 44 (2015) 16961701.Google Scholar
Deng, L.P., Yang, X.F., Han, K., Lu, Y.F., Liang, M., Liu, Q., Materials Characterization 81 (2013) 124133.CrossRefGoogle Scholar
Deng, L.P., Yang, X.F., Han, K., Sun, Z.Y., Liu, Q., Acta Metallurgica Sinica 50 (2014) 231237.Google Scholar
Han, K., Toplosky, V.J., Walsh, R., Swenson, C., Lesch, B., Pantsyrnyi, V.I., Ieee Transactions on Applied Superconductivity 12 (2002) 11761180.CrossRefGoogle Scholar
Yu-Zhang, K., Embury, J.D., Han, K., Misra, A., Philosophical Magazine 88 (2008) 25592567.CrossRefGoogle Scholar
Qin, E.W., Lu, L., Tao, N.R., Tan, J., Lu, K., Acta Materialia 57 (2009) 62156225.CrossRefGoogle Scholar
Han, K., Walsh, R.P., Ishmaku, A., Toplosky, V., Brandao, L., Embury, J.D., Philosophical Magazine 84 (2004) 37053716.CrossRefGoogle Scholar
Davy, C.A., Han, K., Kalu, P.N., Bole, S.T., Ieee Transactions on Applied Superconductivity 18 (2008) 560563.CrossRefGoogle Scholar
Srivatsan, T.S., Anand, S., Troxell, J.D., Materials Letters 14 (1992) 1116.CrossRefGoogle Scholar