Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-2wqtr Total loading time: 0.291 Render date: 2021-09-20T18:45:29.768Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

First-Principles Study of the Electrochemical Sodiation of Rutile-Type Vanadium Dioxide

Published online by Cambridge University Press:  28 January 2020

Daniel Koch*
Affiliation:
National University of Singapore, Department of Mechanical Engineering, 9 Engineering Drive 1, #07-08 Block EA, Singapore 117575; email: koch.danielm@gmail.com
Sergei Manzhos
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique -Université du Québec, 1650, boulevard Lionel-Boulet, VarennesQCJ3X1S2Canada
*Corresponding
Get access

Abstract

We investigate, from first principles, the electrochemical sodiation mechanism of rutile-type vanadium dioxide as a possible electrode material for sodium-ion batteries. The computed voltages versus sodium metal are low in comparison to current state-of-the-art sodium-ion battery cathodes, which we can relate to the large space demand of sodium ions in the compact rutile structure and the resulting severe lattice deformations compared to other working metals. Due to the same reason large anisotropic unit cell volume changes are predicted during cycling. We furthermore find a change of the preferred reaction mechanism during discharge, with a switching between insertion- and conversion-type reaction at higher degrees of sodiation. The predicted capacities on the other hand are appreciable, making a further consideration of this material as high-potential anode in combination with sodium working metal interesting.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

West, K., Zachau-Christiansen, B., Jacobsen, T. and Skaarup, S., Solid State Ion. 40-41, 585 (1990).CrossRefGoogle Scholar
Pan, A., Zhang, J.-G., Nie, Z., Cao, G., Arey, B.W., Li, G., Liang, S.-q. and Liu, J., J. Mater. Chem. 20, 9193 (2010).10.1039/c0jm01306dCrossRefGoogle Scholar
Nakhanivej, P., Park, S.K., Shin, K.H., Yun, S. and Park, H.S., J. Power Sources 436, 226854 (2019).10.1016/j.jpowsour.2019.226854CrossRefGoogle Scholar
Murphy, D.W., Christian, P.A., DiSalvo, F.J. and Waszczak, J.V., lnorg. Chem. 18, 2800 (1979).CrossRefGoogle Scholar
Koch, D. and Manzhos, S., J. Phys. D: Appl. Phys. 53, 083001 (2019).CrossRefGoogle Scholar
West, K., Zachau-Christiansen, B., Jacobsen, T. and Skaarup, S., Solid State Ion. 28-30, 1128 (1988).CrossRefGoogle Scholar
Jiao, L., Yuan, H., Wang, Y., Cao, J. and Wang, Y., Electrochem. Commun. 7, 431 (2005).CrossRefGoogle Scholar
Hayashi, M., Arai, H., Ohtsuka, H. and Sakurai, Y., J. Power Sources 119-121, 617 (2003).CrossRefGoogle Scholar
Chiku, M., Takeda, H., Matsumura, S., Higuchi, E. and Inoue, H., ACS Appl. Mater. Interfaces 7, 24385 (2015).CrossRefGoogle Scholar
Vaalma, C., Buchholz, D., Weil, M. and Passerini, S., Nat. Rev. Mater. 3, 18013 (2018).CrossRefGoogle Scholar
Dickson, A.G. and Goyet, C., Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water ., Version 2 (U.S. Department of Energy, United States, 1994).CrossRefGoogle Scholar
Haynes, W.M., CRC Handbook of Chemistry and Physics, ed 91 (CRC Press2016).CrossRefGoogle Scholar
Nethravathi, C., Rajamathi, C.R., Rajamathi, M., Gautam, U.K., Wang, X., Golberg, D. and Bando, Y., ACS Appl. Mater. Interfaces 5, 2708 (2013).CrossRefGoogle Scholar
Mai, L., Wei, Q., An, Q., Tian, X., Zhao, Y., Xu, X., Xu, L., Chang, L. and Zhang, Q., Adv. Mater. 25, 2969 (2013).CrossRefGoogle Scholar
Liu, J., Li, Q., Wang, T., Yu, D. and Li, Y., Angew. Chem. Int. Ed. 43, 5048 (2004).10.1002/anie.200460104CrossRefGoogle Scholar
Morin, F.J., Phys. Rev. Lett. 3, 34 (1959).10.1103/PhysRevLett.3.34CrossRefGoogle Scholar
Tian, J., Liu, F., Shen, C., Zhang, H., Yang, T., Bao, L., Wang, X., Liu, D., Li, H., Huang, X., Li, J., Chen, L. and Gao, H., J. Mater. Res. 22, 1921 (2007).10.1557/jmr.2007.0255CrossRefGoogle Scholar
Muñoz-Rojas, D. and Baudrin, E., Solid State Ion. 178, 1268 (2007).10.1016/j.ssi.2007.07.003CrossRefGoogle Scholar
Kulish, V.V., Koch, D. and Manzhos, S., Phys. Chem. Chem. Phys. 19, 22538 (2017).CrossRefGoogle Scholar
Cui, Y., Wang, Y., Liu, B., Luo, H. and Gao, Y., RSC Adv. 6, 64394 (2016).CrossRefGoogle Scholar
Park, S., Lee, C.W., Kim, J.-C., Song, H.J., Shim, H.-W., Lee, S. and Kim, D.-W., ACS Energy Lett. 1, 216 (2016).CrossRefGoogle Scholar
Kulish, V.V. and Manzhos, S., RSC Adv. 7, 18643 (2017).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K., Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).10.1103/PhysRevB.59.1758CrossRefGoogle Scholar
Blöchl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Methfessel, M. and Paxton, A.T., Phys. Rev. B 40, 3616 (1989).CrossRefGoogle Scholar
Ho, K.M., Fu, C.L., Harmon, B.N., Weber, W. and Hamann, D.R., Phys. Rev. Lett. 49, 673 (1982).10.1103/PhysRevLett.49.673CrossRefGoogle Scholar
Li, S., Liu, J.-B., Wan, Q., Xu, J. and Liu, B.-X., Chem. Mater. 29, 10075 (2017).CrossRefGoogle Scholar
Bahlawane, N. and Lenoble, D., Chem. Vap. Deposition 20, 299 (2014).CrossRefGoogle Scholar
Koch, D., Kulish, V.V. and Manzhos, S., MRS Commun. 7, 819 (2017).CrossRefGoogle Scholar
Brown, I., Acta Crystallogr. B 44, 545 (1988).CrossRefGoogle Scholar
Wang, T., Su, D., Shanmukaraj, D., Rojo, T., Armand, M. and Wang, G., Electrochem. Energ. Rev. 1, 200 (2018).10.1007/s41918-018-0009-9CrossRefGoogle Scholar
Himmetoglu, B., Floris, A., de Gironcoli, S. and Cococcioni, M., Int. J. Quantum Chem. 114, 14 (2014).10.1002/qua.24521CrossRefGoogle Scholar
Wang, L., Maxisch, T. and Ceder, G., Phys. Rev. B 73, 195107 (2006).CrossRefGoogle Scholar
Shannon, R., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
Koch, D. and Manzhos, S., MRS Adv. 3, 3507 (2018).CrossRefGoogle Scholar
Thomas, P. and Billaud, D., Electrochim. Acta 47, 3303 (2002).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First-Principles Study of the Electrochemical Sodiation of Rutile-Type Vanadium Dioxide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

First-Principles Study of the Electrochemical Sodiation of Rutile-Type Vanadium Dioxide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

First-Principles Study of the Electrochemical Sodiation of Rutile-Type Vanadium Dioxide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *