Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-08T12:50:31.432Z Has data issue: false hasContentIssue false

Effect of Boron Addition on Magnetic-Domain Structure of Rapidly Quenched Zr2Co11−Based Nanomaterials

Published online by Cambridge University Press:  02 May 2016

Lanping Yue*
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, U.S.A.
Yunlong Jin
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, U.S.A. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, U.S.A.
David J. Sellmyer
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, U.S.A. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, U.S.A.
*
*(Email: lyue2@unl.edu)
Get access

Abstract

The boron-content dependence of magnetic domain structures and magnetic properties of nanocrystalline Zr16Co82.5−x Mo1.5Bx (x = 0, 1, 2, 3, 4) melt-spun ribbons have been investigated. Compared to x = 0, the smaller average domain size with a relatively short magnetic correlation length of 120 nm and largest root-mean-square phase shift value of 0.94° are observed for x = 1. The best magnetic properties of coercivity H c = 5.4 kOe, maximum energy product (BH) max = 4.1 MGOe, and saturation polarization J s = 7.8 kG, were obtained for the ribbon with x = 1. The optimal B addition enhances the content of hard magnetic phase, promotes magnetic domain structure refinement, and increases the surface roughness, results in the enhancement of magnetic anisotropy, and thus leads to a significant increase in coercivity and energy product in this sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jin, Y., Zhang, W., Kharel, P., Valloppilly, S., Skomski, R., and Sellmyer, D. J., AIP Adv. 6, 056002 (2016).CrossRefGoogle Scholar
Yue, L., Jin, Y., Zhang, W., Sellmyer, D. J., J. Nanomaterials, Volume 2015, Article ID 151740, (2015).Google Scholar
Zhao, X., Ke, L., Nguyen, M. C., Wang, C.-Z., and Ho, K.-M., J. Appl. Phys. 117(24), 243902 (2015).Google Scholar
Zhang, W., Valloppilly, S., Li, X., Liu, Y., Michalski, S., George, T., Skomski, R., and Sellmyer, D. J., J. Alloys Compd. 587, 578 (2014).CrossRefGoogle Scholar
Balasubramanian, B., Das, B., Skomski, R., Zhang, W., and Sellmyer, D. J., Adv. Mater. 25(42), 6090 (2013).Google Scholar
Hou, Z., Wang, W., Xu, S., Zhang, J., Wu, C., and Su, F., Physica B: Condens. Matter 407(7), 10471050 (2012).Google Scholar
Ishikawa, T. and Ohmori, K., IEEE Trans. Magn. 26 (5), 13701372 (1990).Google Scholar
Saito, T., Appl. Phys. Lett. 82 (14), 23052307 (2003).Google Scholar
Chang, H.W., Tsai, C. F., Hsieh, C. C., Shih, C.W., Chang, W. C., and Shaw, C. C., J. Magn. Magn. Mater. 346, 74 (2013).Google Scholar
Jin, Y., Zhang, W., Skomski, R., Valloppilly, S., Shield, J. and Sellmyer, D. J., J. Appl. Phys. 115 (17) (2014).Google Scholar
Zhang, W., Valloppilly, S., Li, X., Skomski, R., Shield, J., and Sellmyer, D. J., IEEE Trans. Magn. 48 (11), 36033605 (2012).Google Scholar
Yue, L., Liou, S.-H, “Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures”, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, ed. Bhushan, B. , Vol. 2 (Springer-Verlag Berlin Heidelberg, 2011) pp. 287319.Google Scholar
Hadjipanayis, G. C., Sellmyer, D. J., and Brandt, B., Phys. Rev. B 23 (7), pp. 33493354,1981.Google Scholar