Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-g6cgc Total loading time: 0.177 Render date: 2021-10-25T09:42:27.438Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Density Functional Theory Study on Energy Band Gap of Armchair Silicene Nanoribbons with Periodic Nanoholes

Published online by Cambridge University Press:  11 February 2016

Sadegh Mehdi Aghaei*
Affiliation:
QUEST Lab, Department of Electrical and Computer Engineering, Florida International University, Miami, Fl 33172, U.S.A.
Irene Calizo
Affiliation:
QUEST Lab, Department of Electrical and Computer Engineering, Florida International University, Miami, Fl 33172, U.S.A. Department of Mechanical and Materials Engineering, Florida International University, Miami, Fl 33172, U.S.A.
*
*(Email: smehd002@fiu.edu)
Get access

Abstract

In this study, density functional theory (DFT) is employed to investigate the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs). The dangling bonds of armchair silicene nanoribbons (ASiNR) are passivated by mono- (:H) or di-hydrogen (:2H) atoms. Our results show that the ASiNRs can be categorized into three groups based on their width: W = 3P − 1, 3P, and 3P + 1, P is an integer. The band gap value order changes from “EG (3P − 1) < EG (3P) < EG (3P + 1)” to “EG (3P + 1) < EG (3P − 1) < EG (3P)” when edge hydrogenation varies from mono- to di-hydrogenated. The energy band gap values for ASiNRPNHs depend on the nanoribbons width and the repeat periodicity of the nanoholes. The band gap value of ASiNRPNHs is larger than that of pristine ASiNRs when repeat periodicity is even, while it is smaller than that of pristine ASiNRs when repeat periodicity is odd. In general, the value of energy band gap for ASiNRPNHs:2H is larger than that of ASiNRPNHs:H. So a band gap as large as 0.92 eV is achievable with ASiNRPNHs of width 12 and repeat periodicity of 2. Furthermore, creating periodic nanoholes near the edge of the nanoribbons cause a larger band gap due to a strong quantum confinement effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., and Firsov, A., Science 306, 666669 (2004).CrossRef
Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., and Firsov, A., Nature 438, 197200 (2005).CrossRef
Kara, A., Enriquez, H., Seitsonen, A., Lew Yan Voon, L. C., Vizzini, S., and Oughaddou, H., Surf. Sci. Rep., 67, 118 (2012)CrossRef
Guzmán -Verri, G. G. and Voon, L. L. Y., Phys. Rev. B 76, 075131 (2007).CrossRef
Takeda, K. and Shiraishi, K., Phys. Rev. B 50, 14916 (1994).CrossRef
Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., and Le Lay, G., Phys. Rev. Lett. 108, 155501 (2012).CrossRef
Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., and Wu, K., Nano Lett. 12, 35073511 (2012).CrossRef
Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W. A. et al. ., Nano Lett. 13, 685690 (2013).CrossRef
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Yamada-Takamura, Y., Phys. Rev. Lett. 108, 245501 (2012).CrossRef
Aizawa, T., Suehara, S., and Otani, S., J. Phys. Chem. C 118, 2304923057 (2014).CrossRef
Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., and Akinwande, D., Nat. Nanotechnol. 10, 227231 (2015).CrossRef
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).CrossRef
Drummond, N., Zolyomi, V., and Fal’Ko, V., Phys. Rev. B 85, 075423 (2012).CrossRef
Lew Yan Voon, L., Sandberg, E., Aga, R., and Farajian, A., Appl. Phys. Lett. 97, 163114 (2010).CrossRef
Zhu, J. and Schwingenschlögl, U., ACS Appl. Mater. Interfaces 6, 1167511681 (2014).CrossRef
Pan, F., Wang, Y., Jiang, K., Ni, Z., Ma, J., Zheng, J., Quhe, R., Shi, J., Yang, J., Chen, C. et al. ., Sci. Rep. 5, 9075 (2015).CrossRef
Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Leandri, C., Ealet, B., and Le Lay, G., Appl. Phys. Lett. 96, 183102 (2010).CrossRef
De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P. M., Moras, P., Carbone, C., Topwal, D., Olivieri, B., Kara, A., Oughaddou, H., Aufray, B., Le Lay, G., et al. ., Appl. Phys. Lett. 96, 261905 (2010).CrossRef
De Padova, P., Kubo, O., Olivieri, B., Quaresima, C., Nakayama, T., Aono, M., and Le Lay, G., Nano Lett. 12, 55005503 (2012).CrossRef
Tchalala, M. R., Enriquez, H., Mayne, A. J., Kara, A., Roth, S., Silly, M. G., Bendounan, A., Sirotti, F., Greber, T., Aufray, B. et al. ., Appl. Phys. Lett. 102, 083107 (2013).CrossRef
Topsakal, M., Aktürk, E., Sevinc¸li, H., and Ciraci, S., Phys. Rev. B 78, 235435 (2008).CrossRef
Aghaei, S. M., Yasrebi, N., and Rashidian, B., J. Nanomater., 2015, Article ID 936876, 7 pages (2015).
De Padova, P., Quaresima, C., Olivieri, B., Perfetti, P., and Le Lay, G., J. Phys. D: Appl. Phys. 44, 312001 (2011).CrossRef
Li, H.-p. and Zhang, R.-q., Europhys. Lett. 99, 36001 (2012).CrossRef
Özçelik, V. O., Gurel, H. H., and Ciraci, S., Phys. Rev. B 88, 045440 (2013).CrossRef
Berdiyorov, G. and Peeters, F., RSC Adv. 4, 11331137 (2014).CrossRef
Song, Y.-L., Zhang, Y., Zhang, J.-M., Lu, D.-B., and Xu, K.-W., J. Mol. Struct. 990, 7578 (2011).CrossRef
Aghaei, S. M. and Calizo, I., J. App. Phys., 118, 104304 (2015).CrossRef
An, R.-L., Wang, X.-F., Vasilopoulos, P., Liu, Y.-S., Chen, A.-B., Dong, Y.-J., and Zhai, M.- X., J. Phys. Chem. C 118, 2133921346 (2014).CrossRef
Aghaei, S. M. and Calizo, I., SoutheastCon 2015, 16 (2015).
Atomistix Toolkit version 2014.1; QuantumWise, Copenhagen, Denmark; Available at http://www.quantumwise.com (accessed at 20 June 2015).
Li, H., Lu, W., Jiaxin, Z., Wai-Ning, M., Zhengziang, G., Junjie, S., and Jing, L., Eur. Phys. J. B 85, 274 (2012).CrossRef
Zheng, X. H., Huang, L. F., Wang, X. L., Lan, J., and Zeng, Z., Comput. Mater. Sci., 62, 9398 (2012).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Density Functional Theory Study on Energy Band Gap of Armchair Silicene Nanoribbons with Periodic Nanoholes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Density Functional Theory Study on Energy Band Gap of Armchair Silicene Nanoribbons with Periodic Nanoholes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Density Functional Theory Study on Energy Band Gap of Armchair Silicene Nanoribbons with Periodic Nanoholes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *