Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-31T07:28:23.550Z Has data issue: false hasContentIssue false

The central role of ligands in electron transfer from perovskite nanocrystals

Published online by Cambridge University Press:  24 April 2017

Alberto Privitera*
Affiliation:
Department of Chemical Science and U.R. INSTM, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
Marcello Righetto
Affiliation:
Department of Chemical Science and U.R. INSTM, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
Renato Bozio
Affiliation:
Department of Chemical Science and U.R. INSTM, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
Lorenzo Franco
Affiliation:
Department of Chemical Science and U.R. INSTM, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
Get access

Abstract

The nanoscale miniaturization of hybrid organic-inorganic perovskite has given rise to new functionalities, but the full understanding of the multifaceted properties of perovskite nanostructures is still incomplete. Using a combination of optical and magnetic resonance (EPR) spectroscopies, we focused our investigation on the photoinduced electron transfer process taking place in perovskite nanocrystals blended with the fullerene derivative PCBM. In particular we analyzed the different effect of two types of nanocrystal ligands, namely octylamine and oleylamine, on the photoinduced processes. The electron transfer process resulted in efficient fluorescence quenching in a mixed solution and in the formation of charges (PCBM anions) detected by EPR in the blends. Both the optical and EPR techniques revealed a stronger effect when the shorter ligand is present. Finally, pulsed EPR demonstrated the stabilization of the photogenerated charges in proximity of perovskite nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yan, J. and Saunders, B.R., RSC Adv., 4(82), 4328643314 (2014)CrossRefGoogle Scholar
Jung, H.S. and Park, N.-G., Small, 11(1), 1025 (2015)CrossRefGoogle Scholar
Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., and Cahen, D., Nat. Rev. Mater., 1, 15007 (2016)CrossRefGoogle Scholar
Sichert, J.A., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K.Z., Cortadella, R. García, Nickel, B., Cardenas-Daw, C., Stolarczyk, J.K., Urban, A.S., and Feldmann, J., Nano Lett.., 15(10), 65216527 (2015)CrossRefGoogle Scholar
Schmidt, L.C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., Bolink, H.J., Galian, R.E., and Pérez-Prieto, J., J. Am. Chem. Soc.., 136(3), 850853 (2014)CrossRefGoogle Scholar
González-Carrero, S., Galian, R.E., and Pérez-Prieto, J., Part Part Syst Charact., 32(7), 709720 (2015)CrossRefGoogle Scholar
Luo, B., Pu, Y.-C., Yang, Y., Lindley, S.A., Abdelmageed, G., Ashry, H., Li, Y., Li, X., and Zhang, J.Z., J. Phys. Chem. C, 119(47), 2667226682 (2015)CrossRefGoogle Scholar
Li, G., Tan, Z.K., Di, D., Lai, M.L., Jiang, L., Lim, J.H., Friend, R.H., and Greenham, N.C., Nano Lett.., 15(4), 26402644 (2015)CrossRefGoogle Scholar
Martinez-Sarti, L., Koh, T.M., La-Placa, M.-G., Boix, P.P., Sessolo, M., Mhaisalkar, S.G., and Bolink, H.J., Chem. Commun., 52(76), 1135111354 (2016)CrossRefGoogle Scholar
Veldhuis, S.A., Boix, P.P., Yantara, N., Li, M., Sum, T.C., Mathews, N., and Mhaisalkar, S.G., Adv. Mater., 28(32), 68046834 (2016)CrossRefGoogle Scholar
Shirasaki, Y., Supran, G.J., Bawendi, M.G., and Bulovic, V., Nat. Photon., 7(1), 1323 (2013)CrossRefGoogle Scholar
Ahmed, G.H., Liu, J., Parida, M.R., Murali, B., Bose, R., AlYami, N.M., Hedhili, M.N., Peng, W., Pan, J., Besong, T.M.D., Bakr, O.M., and Mohammed, O.F., J. Phys. Chem. Lett.., 7(19), 39133919 (2016)CrossRefGoogle Scholar
Wang, L., Han, J., Sundahl, B., Thornton, S., Zhu, Y., Zhou, R., Jaye, C., Liu, H., Li, Z.-Q., Taylor, G.T., Fischer, D.A., Appenzeller, J., Harrison, R.J., and Wong, S.S., Nanoscale, 8(34), 1555315570 (2016)CrossRefGoogle ScholarPubMed
Vokhmintcev, K.V., Samokhvalov, P.S., and Nabiev, I., Nano Today, 11(2), 189211 (2016)CrossRefGoogle Scholar
Yun, H.J., Paik, T., Edley, M.E., Baxter, J.B., and Murray, C.B., ACS Appl. Mater. Interfaces, 6(5), 37213728 (2014)CrossRefGoogle Scholar
Zhang, F., Zhong, H., Chen, C., Wu, X.-g., Hu, X., Huang, H., Han, J., Zou, B., and Dong, Y., ACS Nano, 9(4), 45334542 (2015)CrossRefGoogle Scholar
Muthu, C., Agarwal, S., Vijayan, A., Hazra, P., Jinesh, K.B., and Nair, V.C., Adv. Mater. Interfaces, 3(18), 1600092 (2016)CrossRefGoogle Scholar
Boaz, H. and Rollefson, G.K., J. Am. Chem. Soc.., 72(8), 34353443 (1950)CrossRefGoogle Scholar
Zheng, K., Žídek, K., Abdellah, M., Messing, M.E., Al-Marri, M.J., and Pullerits, T., J. Phys. Chem. C, 120(5), 30773084 (2016)CrossRefGoogle Scholar
Chris, D.G., Meas. Sci. Technol., 12(9), R53 (2001)Google Scholar
Campbell, K., Zappas, A., Bunz, U., Thio, Y.S., and Bucknall, D.G., J. Photochem. Photobiol., A, 249, 4146 (2012)CrossRefGoogle Scholar
Niklas, J. and Poluektov, O.G., Adv. Energy Mater., 1602226 (2017)CrossRefGoogle Scholar
Lefrançois, A., Luszczynska, B., Pepin-Donat, B., Lombard, C., Bouthinon, B., Verilhac, J.-M., Gromova, M., Faure-Vincent, J., Pouget, S., Chandezon, F., Sadki, S., and Reiss, P., Sci Rep., 5, 7768 (2015)CrossRefGoogle Scholar
Witt, F., Kruszynska, M., Borchert, H., and Parisi, J., J. Phys. Chem. Lett.., 1(20), 29993003 (2010)CrossRefGoogle Scholar
Pientka, M., Wisch, J., Böger, S., Parisi, J., Dyakonov, V., Rogach, A., Talapin, D., and Weller, H., Thin Solid Films, 451–452, 4853 (2004)CrossRefGoogle Scholar
Schweiger, A. and Jeschke, G., in Principles of Pulse Electron Paramagnetic Resonance, (Oxford University Press, 2001)CrossRefGoogle Scholar