Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T22:26:13.800Z Has data issue: false hasContentIssue false

Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems

Published online by Cambridge University Press:  02 January 2018

A. M. Borst*
Affiliation:
Department of Petrology and Economic Geology, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark Department of Geosciences and Natural Resource Management (Geology Section), University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark
H. Friis
Affiliation:
Natural History Museum, University of Oslo, P.O. 1172 Blindern, N-0318, Oslo, Norway
T. Andersen
Affiliation:
Department of Geosciences, University of Oslo, P.O. 1047 Blindern, N-0316, Oslo, Norway
T. F. D. Nielsen
Affiliation:
Department of Petrology and Economic Geology, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
T. E. Waight
Affiliation:
Department of Geosciences and Natural Resource Management (Geology Section), University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark
M. A. Smit
Affiliation:
Department of Geosciences and Natural Resource Management (Geology Section), University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, V6 T 1Z4, Canada

Abstract

The layered agpaitic nepheline syenites (kakortokites) of the Ilímaussaq complex, South Greenland, host voluminous accumulations of eudialyte-group minerals (EGM). These complex Na-Ca-zirconosilicates contain economically attractive levels of Zr, Nb and rare-earth elements (REE), but have commonly undergone extensive autometasomatic/hydrothermal alteration to a variety of secondary mineral assemblages. Three EGM alteration assemblages are recognized, characterized by the secondary zirconosilicates catapleiite, zircon and gittinsite. Theoretical petrogenetic grid models are constructed to assess mineral stabilities in terms of component activities in the late-stage melts and fluids. Widespread alteration of EGM to catapleiite records an overall increase in water activity, and reflects interaction of EGM with late-magmatic Na-, Cl- and F-rich aqueous fluids at the final stages of kakortokite crystallization. Localized alteration of EGM and catapleiite to the rare Ca-Zr silicate gittinsite, previously unidentified at Ilímaussaq, requires an increase in CaO activity and suggests post-magmatic interaction with Ca-Sr bearing aqueous fluids. The pseudomorphic replacement of EGM in the kakortokites was not found to be associated with significant remobilization of the primary Zr, Nb and REE mineralization, regardless of the high concentrations of potential transporting ligands such as F and Cl. We infer that the immobile behaviour essentially reflects the neutral to basic character of the late-magmatic fluids, in which REE-F compounds are insoluble and remobilization of REE as Cl complexes is inhibited by precipitation of nacareniobsite-(Ce) and various Ca-REE silicates. A subsequent decrease in F– activity would furthermore restrict the mobility of Zr as hydroxyl-fluoride complexes, and promote precipitation of the secondary zirconosilicates within the confines of the replaced EGM domains.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, S., Bohsen, H. and Steenfelt, A. (1988) Geological map of Greenland 1: 20 000 the southern part of the Ilímaussaq complex, South Greenland. Grønlands Geologiske Undersøgelse.Google Scholar
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R.S. (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology 51(11) 23032325.CrossRefGoogle Scholar
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R.S. (2013) Petrology of nepheline syenites pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex. Mineralogia, 44, 6198. CrossRefGoogle Scholar
Ansell, H.G., Roberts, A.C., Plant, A.G. and Stuman, B.D. (1980) Gittinsite, anew calcium zirconium silicate from the Kipawa Agpaitic Syenite Complex, Quebec. The Canadian Mineralogist, 18 201203.Google Scholar
Bailey, J.C., Gwodz, R., Rose-Hansen, J. and Sørensen, H. (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190 3553.CrossRefGoogle Scholar
Birkett, T.C., Miller, R.R., Roberts, A.C. and Mariano, A.N. (1992) Zirconium-bearing minerals of the Strange Lake intrusive complex, Quebec-Labrador. The Canadian Mineralogist, 30 191205.Google Scholar
Bohse, H. and Andersen, S. (1981) Review of the stratigraphic divisions of the kakortokite and lujavrite in southern Ilímaussaq. Rapport Grønlands Geologisk Undersøgelse, 103 5362.Google Scholar
Bohse, H., Brooks, C.K. and Kunzendorf, H. (1971) Field observations on the kakortokites of the Ilímaussaq intrusion, South Greenland, including mapping and analyses by portable X-ray fluorescence equipment for zirconium and niobium.. Rapport Grønlands Geologiske Undersøgelse, 38 43100.Google Scholar
Boily, M. and Williams-Jones, A.E. (1994) The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Quebec-Labrador. Contributions to Mineralogy and Petrology, 118 33–7.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2011) From structural topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite Na2Ca4REETi(Si2O7)2OF3 . Mineralogical Magazine, 75, 27552774. CrossRefGoogle Scholar
Chakhmouradian, A.R. andZaitsev, A.N. (2002) Calcite-Amphibole—Clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40 13471374.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2012) Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements 8(5), 347347.CrossRefGoogle Scholar
Chakrabarty, A., Pruseth, K.L. and Sen, A.K. (2012) Compositions and petrogenetic significance of eudialyte group minerals from Sushina, Purulia, West Bengal. Journal of the Geological Society of India, 79, 449–59.CrossRefGoogle Scholar
Chakrabarty, A., Mitchell, R.H., Ren, M., Sen, A.K. and Pruseth, K.L. (2013) Rinkite, cerianite-(Ce), and hingganite-(Ce) in syenites gneisses from the Sushina Hill Complex, India: occurrence, compos¬itional data and petrogenetic significance. MineralogicalMagazine, 77 31373153.Google Scholar
Coulson, I.M. (1997) Post-magmatic alteration in eudia¬lyte from the North Qôroq centre, South Greenland. Mineralogical Magazine, 61, 99109.CrossRefGoogle Scholar
Currie, K.L. andZaleski, E. (1985) The relative stability of elpidite and vlasovite: a P-T indicator for peralkaline rocks. The Canadian Mineralogist, 23, 577582. Google Scholar
Estrade, G., Salvi, S., Béziat, D. and Williams-Jones, A.E. (2015) The origin of skarn-hosted rare-metal mineral¬ization in the Ambohimirahavavy alkaline complex, Madagascar. Economic Geology v(6), 14851513.CrossRefGoogle Scholar
Ferguson, J. (1964) Geology of the Ilímaussaq alkaline intrusion, South Greenland. Part 1. Description of map and structure. Meddelelser om Grønland, 172, 181. Google Scholar
Finch, A.A. (1991) Conversion of nepheline to sodalite during subsolidus processes in alkaline rocks. Mineralogical Magazine, 55, 459–163.CrossRefGoogle Scholar
Graser, G. and Markl, G. (2008) Ca-rich ilvaite-epidote-hydrogarnet endoskarns: a record of late-magmatic fluid influx into the persodic Ilímaussaq complex, South Greenland. Journal of Petrology, 49, 239265. CrossRefGoogle Scholar
Gysi, A.P. and Williams-Jones, A.E. (2013) Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochimica et Cosmochimica Acta, 122 324352.CrossRefGoogle Scholar
Jarosewich, E. and Boatner, L.A. (1991) Rare earth element reference samples for electron microprobe analyses. Geostandards Newsletter, 15, 397399.CrossRefGoogle Scholar
Johnsen, O. and Grice, J.D. (1999) The crystal chemistry of the eudialyte group. The Canadian Mineralogist, 37, 865891. Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) The nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41 785794.CrossRefGoogle Scholar
Karup-Møller, S., Rose-Hansen, J. and Sørensen, H. (2010) Eudialyte decomposition minerals with new hithero undescribed phases from the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 58, 7588 CrossRefGoogle Scholar
Karup-Møller, S. and Rose-Hansen, J. (2013) New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 61, 4770. CrossRefGoogle Scholar
Kempe, U., Götze, J., Dandar, S. and Haberman, D. (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study. Mineralogical Magazine, 63, 165177 CrossRefGoogle Scholar
Khadem Allah, B., Fontan, F., Kader, M.M., Onchew, P. and Sørensen, H. (1998) Reactions between agpaitic nephelinitic syenitic melts and sedimentary carbonate rocks - exemplified by the Tamazeght complex, Morocco. Geochemistry International, 36, 569581. Google Scholar
Konnerup-Madsen, J. (2001) A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190 159166 CrossRefGoogle Scholar
Krumrei, T.V., Villa, I.M., Marks, M.A.W. and Markl, G. (2006) A 40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: Implications for the 40K decay sonstant and for the duration of magmatic activity in a peralkaline complex. Chemical Geology, 227, 258273. CrossRefGoogle Scholar
Kynicky, J., Chakhmouradian, A.R., Xu, C., Krmicek, L. and Galiova, M. (2011) Distribution and evolution of zirconium mineralization in perkalkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. The Canadian Mineralogist, 49 947965.CrossRefGoogle Scholar
Larsen, L.M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. Journal of Petrology, 17, 258290. CrossRefGoogle Scholar
Larsen, L.M. and Sørensen, H. (1987) The Ilímaussaq intrusion — progressive crystallization and formation of layering in an agpaitic magma. Pp. 473-488 in: Alkaline Igneous Rocks(J.G. Fitton and B.G. J. Upton, editors). Geological Society of London Special Publication, 30.CrossRefGoogle Scholar
Le Maitre, R.W. (2003) Igneous Rocks: A Classification and Glossary of Terms, 2nd edition. Cambridge University Press, Cambridge, UK.Google Scholar
Lindhuber, M.J., Marks, M.A.W.., Bons, P.D., Wenzel, T. and Markl, G. (2015) Crystal mat-formation as an igneous layering forming process: Textural and geochemical evidence from the ‘lower layered’ nepheline syenite sequence of the Ilímaussaq complex, South Greenland. Lithos 224225 and 295-295.CrossRefGoogle Scholar
Lorenzen, J. (1884) Untersuchungen einiger Mineralien aus Kangerdluarsuk in Grönland. Zeitschrift für Kristallographie, 9, 243254. Google Scholar
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144 331346 CrossRefGoogle Scholar
Markl, G., Marks, M.A.W.., Schwinn, G. and Sommer, H. (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilímaussaq Complex, South Greenland. Journal of Petrology, 42, 22312258. CrossRefGoogle Scholar
Markl, G., Marks, M.A.W.. and Frost, B.R. (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology, 51 18311847.CrossRefGoogle Scholar
Marks, M.A.W.. and Markl, G. (2015) The Ilímaussaq Alkaline Complex, South Greenland. Pp. 649-691 in: Layered Intrusions (B. Charlier O. Namur R. Latypov and C. Tegner, editors). Springer Geology, Dordrecht, The Netherlands.Google Scholar
Marks, M.W., Hettman, K. and Schilling, J.T. (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52 439455.CrossRefGoogle Scholar
Marr, R.A. and Wood, S.A. (1992) Preliminary petrogen-etic grids for sodium and calcium zirconosilicate minerals in felsic peralkaline rocks: The SiO2-Na2ZrO and SiO2—CaZrO, pseudobinary systems. American Mineralogist, 77 810810.Google Scholar
Migdisov, A.A. and Williams-Jones, A.E. (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987997. CrossRefGoogle Scholar
Migdisov, A.A., Williams-Jones, A.E. and Wagner, T. (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride-and chloride-bearing aqueous solutions at tempera¬tures up to 300°C. Geochimica et CosmochimicaActa, 73, 70877109. CrossRefGoogle Scholar
Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V. and Salvi, S. (2011) An experimental study of the solubility of baddelyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochimica et Cosmochimica Acta, 75, 74267434. CrossRefGoogle Scholar
Mitchell, R.H. and Chakrabarty, A. (2012) Paragenesis and decomposition assemblage of a Mn-rich eudialyte from the Sushina peralkaline nepheline syenite gneiss, Paschim Banga, India. Lithos, 152 218226.CrossRefGoogle Scholar
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujav-rite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352372. CrossRefGoogle Scholar
Morimoto, N. (1988) Nomenclature of pyroxenes. Mineralogy and Petrology, 39, 5576 CrossRefGoogle Scholar
Olivo, G.R. and Williams-Jones, A.E. (1999) Hydrothermal REE-rich eudialyte from the Pilanesberg complex, South Africa. The Canadian Mineralogist, 37, 653663. Google Scholar
Petersen, O.Y., Ronsbo, J.G. and Leonardsen, E.S. (1989) Nacareniobsite-(Ce), a new mineral species from the Ilímaussaq alkaline complex, South Greenland, and its relation to mosandrite and the rinkite series. Neues Jahrbuch für Mineralogie Monatshefte, 2 8496.Google Scholar
Pfaff, K., Krumrei, T.V., Marks, M.A.W.., Wenzel, T., Rudolf, T and Markl, G. (2008) Chemical and physical evolution of the ‘lower layered series’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos, 106 280296.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. Recherche Aerospatiale, 3, 1338 Google Scholar
Ratschbacher, B.C., Marks, M.A.W.., Bons, P.D., Wenzel, T and Markl, G. (2015) Emplacement and geochem-ical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: the lujavrites of the Ilímaussaq complex, SW Greenland. Lithos, 231 6276 CrossRefGoogle Scholar
Rønsbo, J.G., Sørensen, H., Roda-Robles, E., Fontan, F. and Monchoux, P. (2013) Rinkite-nacareniobsite-(Ce) solid solution series and hainite from the Ilímaussaq alkaline complex: occurrence and compositional variation. Bulletin of the Geological Society Denmark, 62 115 CrossRefGoogle Scholar
Roskill, (2011) Rare Earths and Yttrium: Market Outlook to 2015. 14th Edition. Roskill Information Services Ltd., London.Google Scholar
Salvi, S. and Williams-Jones, A.E. (1995) Zircono silicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist, 80, 10311040. CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60, 19171932. CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (2005) Alkaline Granite-Syenite Deposits. Pp. 315-341 in: Rare-Element Geochemistry and Mineral Deposits (R.L. Linnen and I.M. Samson, editors). GAC Short Course Notes 17. Geological Association of Canada, St. John's, Canada.Google Scholar
Salvi, S. and Williams-Jones, A.E. (2006) Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91, 1934. CrossRefGoogle Scholar
Salvi, S., Fontan, F., Monchoux, P., Williams-Jones, A.E. and Moine, B. (2000) Hydrothermal mobilization of high field strength elements in Alkaline Igneous Systems: Evidence from the Tamazeght complex (Morocco). Economic Geology, 95, 559576. Google Scholar
Schilling, J., Wu, F.Y., McCammon, C., Wenzel, T., Marks, M.A.W.., Pfaff, K., Jacob, D.E. and Markl, G. (2011) The compositional variability of eudialyte-group minerals. Mineralogical Magazine, 75, 87115 CrossRefGoogle Scholar
Sheard, E.R., Williams-Jones, A.E., Heiligmann, M., Pederson, C. and Trueman, D.L. (2012) Controls on the concentration of zirconium, niobium and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107 81104.CrossRefGoogle Scholar
Shmulovich, K.I. and Churakov, S.V. (1998) Natural fluid phases at high temperature and low pressures. Journal of Geochemical Exploration, 62, 183191. CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structural topology to chemical composition. Y Titanium silicates: crystal chemistry of nacareniobsite-Ce. The Canadian Mineralogist, 46, 13231342 CrossRefGoogle Scholar
Stromeyer, F. (1819) Summary of meeting 16 December 1819. Göttingische gelehrte Anzeigen, 3, 19932000. Google Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites: a potential source of rare elements. Applied Geochemistry, 7 417417.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks — an overview. Mineralogical Magazine, 61 485–98.CrossRefGoogle Scholar
Sørensen, H. (2001) Brief introduction to the Geology of the Ilímaussaq alkaline complex, South Greenland, and its exploration history. Geology of Greenland Survey Bulletin, 190 724.Google Scholar
Sørensen, H., Bohse, H. and Bailey, J.C. (2006) The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos, 91 286300.CrossRefGoogle Scholar
Timofeev, A., Migdisov, A.A. and Williams-Jones, A.E. (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 158 103111.CrossRefGoogle Scholar
Upton, B.G.J.. (2013) Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geological Survey of Denmark and Greenland Bulletin, 29, 1128. CrossRefGoogle Scholar
Ussing, N.V.. (1912) Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, 38, 426.Google Scholar
Waight, T., Baker, J. and Willigers, B. (2002) Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb-Sr geochronology. Chemical Geology, 186 99116.CrossRefGoogle Scholar
Zakharov, V.I., Maiorov, D.V., Alishkin, A.R. andMatveev, V.A. (2011) Causes of insufficient recovery of zirco¬nium during acidic processing of lovozero eudialyte concentrate. Russian Journal of Non-Ferrous Metals, 52, 423–2.CrossRefGoogle Scholar