Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:36:31.699Z Has data issue: false hasContentIssue false

Tracking mineral evolution and element mobility during albitisation and subsequent kaolinisation of phyllite rocks: A case study from the Verrucano of Monti Pisani, Tuscany, Italy

Published online by Cambridge University Press:  13 May 2022

Massimo D'Orazio*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
Paolo Fulignati
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
Anna Gioncada
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
Francesco Cavalcante
Affiliation:
Istituto di Metodologie per l'Analisi Ambientale–CNR, 85050 Tito Scalo, Italy
*
*Author for correspondence: Massimo D'Orazio, Email: massimo.dorazio@unipi.it

Abstract

This work describes the first occurrence of albitite rocks in the Middle Triassic Verruca Formation, Monti Pisani, Northern Apennines, northern Tuscany, Italy. The albitite formed by Na-metasomatism of phyllites (‘potassic white mica' + quartz + ‘chlorite' + hematite + albite) in an amagmatic environment. The albitisation process took place after the Miocene main phases of Apenninic deformation and was followed by the formation of veins of Fe-carbonate + quartz. Hydrothermal alteration progressed with the ingression, possibly favoured by the increase of permeability due to albitisation, of a slightly acidic, oxidising, aqueous fluid that led to the pervasive kaolinisation of the albitite and to the complete transformation of the Fe-carbonate of the veins into Fe-hydroxides. This stage was followed by supergene alteration that led to the formation of a pervasive network of halloysite veinlets and colloform (P–Al–Si)-bearing Fe-hydroxides. Finally, the hydrothermally altered rock underwent a localised brittle fracturing without new minerals being formed. The prominent compositional changes occurring during this multi-stage hydrothermal process were the inversion of the Na2O/K2O ratio of the whole rock (from 0.07 in the pristine phyllite to up to 200 for the kaolinised albitite), the loss of Fe and Mg, and the enrichment of Sb. The MREE were partially lost, whereas LREE and HREE behaved conservatively. Though pervasive hydrothermal alteration occurrences are common in central-southern Tuscany, mostly related to the post-collisional extensional regime, lithospheric thinning and emplacement of magmatic bodies in the crust, the rare Monti Pisani kaolinised albitite described in this investigation expands the effects of post-collisional hydrothermal activity in Tuscany northwards, far from potential magmatic sources.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Giancarlo Della Ventura

References

Barton, M.D. and Johnson, D.A. (1996) Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24, 259262.2.3.CO;2>CrossRefGoogle Scholar
Batini, F., Brogi, A., Lazzarotto, A., Liotta, D. and Pandeli, E. (2003) Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes, 26, 239244.CrossRefGoogle Scholar
Bau, M. (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 6777.CrossRefGoogle Scholar
Blum, A.E. (1994) Feldspars in weathering. Pp. 595630 in: Feldspars and their reactions (Parsons, I., editor). NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 421. Springer, Dordrecht. https://doi.org/10.1007/978–94–011–1106–5_15.CrossRefGoogle Scholar
Bodnar, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683684.CrossRefGoogle Scholar
Boulvais, P., Ruffet, G., Cornichet, J. and Mermet, M. (2007) Cretaceous albitisation and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos, 93, 89106.CrossRefGoogle Scholar
Carten, R.B. (1986) Sodium-calcium metasomatism: chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit. Economic Geology, 81, 14951519.CrossRefGoogle Scholar
Castorina, F., Masi, U., Padalino, G. and Palomba, M. (2006) Constraints from geochemistry and Sr–Nd isotopes for the origin of albitite deposits from Central Sardinia (Italy). Mineralium Deposita, 41, 323338.CrossRefGoogle Scholar
Cathelineau, M. (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. Journal of Petrology, 27, 945965.CrossRefGoogle Scholar
Cathelineau, M. (1987) U-Th-REE mobility during albitisation and quartz dissolution in granitoids: evidence from south-east French Massif Central. Bulletin de Minéralogie, 110, 249259.CrossRefGoogle Scholar
Cathelineau, M., Boiron, M.-C. and Jakomulski, H. (2021) Triassic evaporites: a vast reservoir of brines mobilized successively during rifting and thrusting in the Pyrenees. Journal of the Geological Society, 178, 6.CrossRefGoogle Scholar
Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G. and Tateo, F. (2007) Illite-Smectite mixed layer in Sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Apennines): geological inferences. Bollettino della Società Geologica Italiana, 126, 241254.Google Scholar
Cesarano, M., Bish, D.L., Cappelletti, P., Cavalcante, F., Belviso, C. and Fiore, S. (2018) Quantitative mineralogy of clay-rich siliciclastic landslide terrain of the Sorrento Peninsula, Italy, using a combined XRPD and XRF approach. Clays and Clay Minerals, 66, 353369.CrossRefGoogle Scholar
Charoy, B. and Pollard, P.J. (1989) Albite-rich, silica-depleted metasomatic rocks at Emuford, Northeast Queensland; mineralogical, geochemical, and fluid inclusion constraints on hydrothermal evolution and tin mineralization. Economic Geology, 84, 18501874.CrossRefGoogle Scholar
Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 137.CrossRefGoogle Scholar
Condit, C.B., Mahan, K.H., Curtis, K.C. and Moller, A. (2018) Dating metasomatism: Monazite and zircon growth during amphibolite facies albitisation. Minerals, 8, 187, doi:10.3390/min8050187.CrossRefGoogle Scholar
Crawford, M.L. (1981) Phase equilibria in aqueous fluid inclusions. Pp. 75100 in: Short Course in Fluid Inclusions: Application to Petrology (Hollister, L.S. and Crawford, M.L., editors). Mineralogical Association of Canada, Vol. 6.Google Scholar
Dini, A., Orlandi, P., Protano, G. and Riccobono, F. (1998) Le vene di quarzo del complesso metamorfico dei Monti Pisani (Toscana): caratterizzazione strutturale, mineralogia ed inclusioni fluide. Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, 105, 113136.Google Scholar
Eaton, P.C. and Setterfield, T.N. (1993) The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji. Economic Geology, 88, 10531083.CrossRefGoogle Scholar
Engvik, A.K., Putnis, A., Fitz Gerald, J.D. and Austrheim, H. (2008) Albitisation of granitic rocks: The mechanism of replacement of oligoclase by albite. The Canadian Mineralogist, 46, 14011415.CrossRefGoogle Scholar
Franceschelli, M., Leoni, L., Memmi, I. and Puxeddu, M. (1986) Regional distribution of Al-silicates and metamorphic zonation in low-grade Verrucano metasediments from the Northern Apennines, Italy. Journal of Metamorphic Geology, 4, 309321.CrossRefGoogle Scholar
Franceschelli, M., Leoni, L. and Sartori, F. (1987) Geochemistry and mineralogy of detritic rocks from Verrucano type-sequences of Northern Apennines (Monti Pisani and Punta Bianca), Italy. Rendicondi della Società Italiana di Mineralogia e Petrologia, 42, 1331.Google Scholar
Franceschelli, M., Leoni, L. and Memmi, I. (1989) b0 of muscovite in low and high variance assembleges from low grade Verrucano rocks, Northern Apennines, Italy. Schweizerische Mineralogische und Petrographische Mitteilungen, 69, 107115.Google Scholar
Franceschelli, M., Leoni, L. and Sartori, F. (1991) Crystallinity distribution and crystallinity-b0 relationships in white K-micas of Verrucano metasediments (Northern Apennins, Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 71, 161167.Google Scholar
Grant, J.A. (1986) The isocon diagram—a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81, 19761982.CrossRefGoogle Scholar
Holness, M.B. (2003) Growth and albitisation of K-feldspar in crystalline rocks in the shallow crust: a tracer for fluid circulation during exhumation? Geofluids, 3, 89102.CrossRefGoogle Scholar
Kaur, P., Chaudhri, N. and Eliyas, N. (2019) Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: Evidence from new metasomatic replacement fronts. Geoscience Frontiers, 10, 18911913.CrossRefGoogle Scholar
Kontonikas-Charos, A., Ciobanu, C.L. and Coo, N.J. (2014) Albitisation and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos, 208–209, 178201.CrossRefGoogle Scholar
Krumm, S. (1999) The Erlangen geological and mineralogical software collection. Computers & Geosciences, 25, 489499.CrossRefGoogle Scholar
Leoni, L., Lezzerini, M. and Saitta, M. (2008) Calcolo computerizzato dell'analisi mineralogica quantitativa di rocce e sedimenti argillosi basato sulla combinazione dei dati chimici e diffrattometrici. Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, 113, 6369.Google Scholar
Leoni, L., Montomoli, C. and Carosi, R. (2009) Il metamorfismo delle unità tettoniche dei Monti Pisani (Appennino Settentrionale). Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, 114, 6173.Google Scholar
Mathieu, L. (2018) Quantifying hydrothermal alteration: A review of methods. Geosciences, 8, article number 245, doi:10.3390/geosciences8070245.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-S. (1995) Composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Montomoli, C., Ruggieri, G., Carosi, R., Dini, A. and Genovesi, M. (2005) Fluid source and pressure-temperature conditions of high-salinity fluids in syn-tectonic veins from the Northeastern Apuan Alps (Northern Apennines, Italy). Physics and Chemistry of the Earth, 30, 10051019.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Second edition. Oxford University Press, Oxford and New York, 400 pp.Google Scholar
Paoli, G., Stokke, H.H., Rocchi, S., Sirevaag, H., Ksienzyk, A.K., Jacobs, J. and Košler, J. (2017) Basement provenance revealed by U–Pb detrital zircon ages: A tale of African and European heritage in Tuscany, Italy. Lithos, 277, 376387.CrossRefGoogle Scholar
Pérez-Soba, C. and Villaseca, C. (2019) Li-Na-metasomatism related to I-type granite magmatism: A case study of the highly fractionated La Pedriza pluton (Iberian Variscan belt). Lithos, 344–345, 159174.CrossRefGoogle Scholar
Perez, R.J. and Boles, J.R. (2005) An empirically derived kinetic model for albitisation of detrital plagioclase. American Journal of Science, 305, 312343.CrossRefGoogle Scholar
Petersson, J., Stephens, M.B., Mattsson, H. and Möller, C. (2012) Albitisation and quartz dissolution in Paleoproterozoic metagranites, central Sweden – Implications for the disposal of spent nuclear fuel in a deep geological repository. Lithos, 148, 1026.CrossRefGoogle Scholar
Pirajno, F. (2009) Hydrothermal Processes and Mineral Systems. Springer, 1250 pp.CrossRefGoogle Scholar
Pitzalis, E., Fulignati, P., Lezzerini, M., Cioni, R., Pinarelli, L., Tamponi, M. and Gioncada, A. (2019) Origin of volcanic-hosted Mn-oxide mineralization from San Pietro Island (SW Sardinia, Italy): An integrated geochemical, mineralogical and isotopic study. Journal of Geochemical Exploration, 204, 206223.CrossRefGoogle Scholar
Quesnel, B., Boiron, M.-C., Cathelineau, M., Truche, L., Rigaudier, T., Bardoux, G., Agrinier, P., de Saint Blanquat, M., Masini, E. and Gaucher, E.C. (2019) Nature and origin of mineralizing fluids in hyperextensional systems: the case of Cretaceous Mg metasomatism in the Pyrenees. Geofluids, 2019, ID 7213050.CrossRefGoogle Scholar
Rau, A. and Tongiorgi, M. (1974) Geologia dei Monti Pisani a sud-est della Valle del Guappero. Memorie della Società Geologica Italiana, 13, 227408.Google Scholar
Roedder, E. (Editor) (1984) Fluid Inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Washington, D.C., 646 pp.CrossRefGoogle Scholar
Rosenbauer, R.J., Bischoff, J.L. and Radtke, A.S. (1983) Hydrothermal alteration of graywacke and basalt by 4 molal NaCl. Economic Geology, 78, 17011710.CrossRefGoogle Scholar
Rubenach, M.J. and Lewthwaite, K.A. (2002) Metasomatic albitites and related biotite-rich schists from a low-pressure polymetamorphic terrane, Snake Creek Anticline, Mount Isa Inlier, north-eastern Australia: microstructures and P–T–d paths. Journal of Metamorphic Geology, 20, 191202.CrossRefGoogle Scholar
Serri, G., Innocenti, F. and Manetti, P. (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics, 223, 117147.CrossRefGoogle Scholar
Smith, C. and Perseil, E.-A. (1997) Sb -rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrology and crystal chemistry. Mineralogical Magazine, 61, 655669.CrossRefGoogle Scholar
Taylor, S.R. and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Reviews in Geophysics, 33, 241265.CrossRefGoogle Scholar
Touret, J. and Nijland, T. (2013) Prograde, Peak and Retrograde Metamorphic Fluids and Associated Metasomatism in Upper Amphibolite to Granulite Facies Transition Zones. Pp. 415469 in: Metasomatism and the Chemical Transformation of Rock (Harlov, D.E. and Austrheim, H., editors). Springer, Berlin.CrossRefGoogle Scholar
van de Kamp, P. C. and Leake, B. E. (1996) Petrology, geochemistry, and Na metasomatism of Triassic-Jurassic non-marine clastic sediments in the Newar, Hartford, and Deerfield rift basins, northeastern USA. Chemical Geology, 133, 89124.CrossRefGoogle Scholar