Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T08:18:04.197Z Has data issue: false hasContentIssue false

Synthesis and structure of magnesium hydroxide fluoride, Mg(OH)F: a topological intermediate between brucite- and rutile-type structures

Published online by Cambridge University Press:  05 July 2018

W. A. Crichton*
Affiliation:
European Synchrotron Radiation Facility, B. P. 220, 38043 Grenoble cedex, France Department of Earth Sciences, University College London, London WC1E 6BT, UK
J. B. Parise
Affiliation:
Department of Chemistry, Department of Geosciences and Mineral Physics Institute, Stony Brook University, NY 11794-2100, USA
H. Müller
Affiliation:
European Synchrotron Radiation Facility, B. P. 220, 38043 Grenoble cedex, France
J. Breger
Affiliation:
Institut Laue Langevin, 38043 Grenoble cedex, France
W. G. Marshall
Affiliation:
ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
M. D. Welch
Affiliation:
Department of Mineralogy, The Natural History Museum, London SW7 5BD, UK
*

Abstract

Magnesium hydroxyfluoride, Mg(OH)F, has been synthesized by a subcritical hydrothermal route from a 1:1 molar mixture of brucite, Mg(OH)2, and sellaite, MgF2 with a rutile type structure, in excess water. Using a combination of synchrotron X-ray and time-of-flight neutron powder diffraction, the structure of Mg(OH)F has been solved in the diaspore space group Pnma with a = 10.116(3), b = 4.6888(10) and c = 3.0794(7) Å at ambient conditions. The most intense diffraction lines are [dobs (hkl) Iobs]: 2.291 (211) 10, 4.253 (101) 7, 1.747 (212) 7, 2.229 (401) 6 and 1.480 (610) (4) Å, with the largest d-spacing at 5.058 Å. Sharp infrared stretching bands are located at 3679 and 3645 cm–1, with a broader band at 3535 cm–1. The topology of the structure is intermediate between that of the OH and F endmembers, being derived through notional shearing nearly normal to the sheets of octahedra of the CdI2/Mg(OH)2-type structure. Further similar shearing at an interval 1/2a would lead to a Cd(OH)F-type structure, which is also related to the rutile structure type. The observations and model presented here indicate a close correlation between the structural properties of the endmembers and Mg(OH)F.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work carried out while on sabbatical at the ILL and ESRF

References

Altomare, A., Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. and Rizzi, R. (1999) Expo: a program for full powder pattern decomposition and crystal structure solution. Journal of Applied Crystallography, 32, 339340.CrossRefGoogle Scholar
Baur, W.H. and Kahn, A.A. (1971) Rutile-type compounds. VI. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica, B27, 21332139.Google Scholar
Booster, J.L., Voncken, J.H.L., Van Sandwijk, A. and Reuter, M.A. (2002) Characterization of hydroxylbearing magnesium fluoride containing physicallybound water. Powder Diffraction, 17, 112118.CrossRefGoogle Scholar
Booster, J.L., Van Sandvijk, A. and Reuter, M.A. (2003) Conversion of magnesium fluoride to magnesium hydroxide. Minerals Engineering, 16, 273281.CrossRefGoogle Scholar
Boultif, A. and Louer, D. (2004) Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724731.CrossRefGoogle Scholar
Braterman, P.S. and Cygan, R.T. (2006) Vibrational spectroscopy of brucite: a molecular simulation investigation. American Mineralogist, 91, 11881196.CrossRefGoogle Scholar
Catti, M., Ferraris, G., Hull, S. and Pavese, A. (1995) Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Physics and Chemistry of Minerals, 22, 200206.CrossRefGoogle Scholar
Crane, R.L. and Ehlers, E.G. (1969) System MgF2-MgO. American Journal of Science, 267, 11051111.CrossRefGoogle Scholar
Cudennec, Y., Riou, A., Gerault, Y. and Lecerf, A. (2000) Synthesis and crystal structures of Cd(OH)Cl and Cu(OH)Cl and relationship to brucite type. Journal of Solid State Chemistry, 151, 308312.CrossRefGoogle Scholar
de Oliviera, E.F. and Hase, Y. (2001) Infrared study and isotopic effect of magnesium hydroxide. Vibrational Spectroscopy, 25, 5356.CrossRefGoogle Scholar
Duffy, C.J. and Greenwood, H.J. (1979) Phase-equilibria in the system MgO-MgF2-SiO2-H2O. American Mineralogist, 64, 11561174.Google Scholar
Feitknecht, W. and Held, F. (1944) The hydroxychloride of magnesium. Helvetica Chimica Acta, 27, 14801495.CrossRefGoogle Scholar
Frost, R.L. and Kloprogge, J.T. (1999) Infrared emission spectroscopic study of brucite. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 55, 21952205.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O. and Thompson, A. (1994) Calibration and correction of spatial distortions in 2D detector systems. Nuclear Instruments and Methods in Physics Research, Section A, 346, 312321.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. and Hausermann, D. (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Research, 14, 235248.CrossRefGoogle Scholar
Hannemann, A., Hundt, R., Schon, J.C. and Jansen, M. (1998) A new method for space-group determination. Journal of Applied Crystallography, 31, 922928.CrossRefGoogle Scholar
Hill, R.J. (1979) Crystal structure refinement and electron density distribution in diaspore. Physics and Chemistry of Minerals, 5, 179200.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hubbard, C.R. (1983) Certification of Si powder diffraction standard reference material-640a. Journal of Applied Crystallography, 16, 285288.CrossRefGoogle Scholar
Hundt, R., Schon, J.C., Hannemann, A. and Jansen, M. (1999) Determination of symmetries and idealized cell parameters for simulated structures. Journal of Applied Crystallography, 32, 413416.CrossRefGoogle Scholar
Hunter, B. (1998) Rietica-a visual Rietveld program. International Union of Crystallography Commission on Powder Diffraction Newsletter, 20.Google Scholar
Iitaka, Y., Locchi, S. and Oswald, H.R. (1961) Die Kristallstruktur von CuOHCl. Helvetica Chimica Acta, 44, 20952103.CrossRefGoogle Scholar
ISIS (1996) Dedicated facility for high pressure diffraction. Pp. 6162. in: ISIS Facility Annual Report 19951996. RAL-TR-96-050, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UGoogle Scholar
ISIS, K. (1997) PEARL. Pressure and engineering research line. Pp. 2839. in: ISIS Facility Annual Report 19961997. RAL-TR-97-050 Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK.Google Scholar
Kister, S. (2003) Strukturuntersuchungen von Cadmiumhydroxidhalogeniden mittels Diffraktion, NMR-Spektroskopie und quantenmechanischen Ab Initio Berechnungen. Unpublished PhD thesis, University of Dortmund, Germany.Google Scholar
Krause, W. and Nolze, G. (2000) PowderCell for Windows, version 2.4. Federal Institute for Materials Research and Testing (BAM), Rudower Chausee 5, 12489 Berlin, Germany.Google Scholar
Lange, B.A. and Haendler, H.M. (1973) The thermal decomposition of nickel and zinc fluoride tetrahydrates. Journal of Inorganic and Nuclear Chemistry, 35, 31293133.CrossRefGoogle Scholar
Larson, A.C. and von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos Laboratory Report LAUR 86748. Los Alamos, New Mexico, USA.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Abinitio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, Abhandlong, 130, 10471059.CrossRefGoogle Scholar
Lutz, H.D., Moeller, H. and Schmidt, M. (1994) Lattice vibration spectra. Part LXXXI Brucite I.-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd)-IR and Raman spectra, neutron diffraction of Fe(OH)2. Journal of Molecular Structure, 328, 121132.CrossRefGoogle Scholar
Parise, J.B., Leinenweber, K., Weidner, D.J., Tan, K. and von Dreele, R.B. (1994) Pressure-induced H bonding: neutron diffraction study of brucite, Mg(OD)2, to 9.3 GPa. American Mineralogist, 79, 193196.Google Scholar
Peter, S., Weckler, B., Roisnel, T. and Lutz, H.D. (1997) Linear, bent and trifurcated OH-_F-hydrogen bonds: neutron powder diffraction, infrared and Raman spectroscopies of Zn(OD)F I and Zn(OD)F Ia. Bulletin of the Chemists and Technologists of Macedonia, 16, 2132.Google Scholar
Putz, H., Schon, J.C. and Jansen, M. (1999) Combined method for ab initio structure solution from powder diffraction data. Journal of Applied Crystallography, 32, 864870.CrossRefGoogle Scholar
Rodríguez, M.A., Millán, P., Rojas, R.M. and García Martínez, O. (1995) Thermal behaviour of copper substituted hydroxide fluoride series CuxCo1-x(OH)F. Journal of Thermal Analysis and Calorimetry, 44, 295404.CrossRefGoogle Scholar
Schluter, J., Klaska, K.H. and Gebhard, G. (2000) Belloite, Cu(OH)Cl, a new mineral from Sierra Gorda, Antofagasta, Chile. Neues Jahrbuch für Mineralogie, Monatshefte, 6773.Google Scholar
Schmid, H. (1965) Beiträge zur Kenntnis der Kobalt(II)-Fluorid hydrate und Kobalt (II)-Hydroxidfluoride. Zeitschrift für anorganische und allgemeine Chemie, 334, 297303.CrossRefGoogle Scholar
Serier, H. (2009) Autour des Fluorures et Oxydes de Zinc: Propriétés Opto-électroniques et Magnétoe ´lectroniques. Unpublished PhD thesis, University of Bordeaux 1, France. Serier, H., Gaudon, M., Demourgues, A. and Tressaud, A. (2007) Structural features of zinc hydroxyfluoride. Journal of Solid State Chemistry, 180, 34853492.CrossRefGoogle Scholar
Shirley, R. (2004) Crysfire 2004: An Interactive Powder Indexing Support System. 41 Guildford Park Avenue, Guildford, Surrey, UK. Spek, A.L. (2003) Single-crystal structure validation with the program Platon. Journal of Applied Crystallography, 36, 713.Google Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65, 148155.CrossRefGoogle ScholarPubMed
Srivastava, O.K. and Secco, E.A. (1967a) Studies on metal hydroxy compounds II. Infrared spectra of zinc derivatives e-Zn(OH)2, b-ZnOHCl, ZnOHF, Zn5(OH)8Cl2, and Zn5 (OH)8Cl2·H2O. Canadian Journal of Chemistry, 45, 585588.CrossRefGoogle Scholar
Srivastava, O.K. and Secco, E.A. (1967b) Studies on metal hydroxy compounds. IV. Infrared spectra of cadmium derivatives Cd(OH)2, CdOHCl, CdOHF. Canadian Journal of Chemistry, 45, 31993201.Google Scholar
Stålhandske, C. (1979a) Cadmium fluoride hydroxide. Acta Crystallographica, B35, 21842186.CrossRefGoogle Scholar
Stålhandske, C. (1979b) Refinement of mercury fluoride hydroxide. Acta Crystallographica, B35, 949951.Google Scholar
Taupin, D. (1973) Powder-diagram automatic-indexing routine. Journal of Applied Crystallography, 6, 380385.CrossRefGoogle Scholar
Visser, J.W. (1969) A fully automatic program for finding unit cell from powder data. Journal of Applied Crystallography, 2, 8995.CrossRefGoogle Scholar
Volkova, L.M., Samarets, L.V., Polishchuk, S.A. and Lantash, N.M. (1978) Crystal structures of zinc and cadmium hydroxyfluorides. Kristallografiya, 23, 951955.Google Scholar
Werner, P.E., Eriksson, L. and Westdahl, M. (1985) Treor, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18, 367370.CrossRefGoogle Scholar