Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-13T21:36:24.724Z Has data issue: false hasContentIssue false

The synthesis and solubility of the copper hydroxyl nitrates: gerhardtite, rouaite and likasite

Published online by Cambridge University Press:  05 July 2018

C. H. Yoder*
Affiliation:
Department of Chemistry, Franklin Marshall College, Lancaster, PA 17604-3303, USA
E. Bushong
Affiliation:
Department of Chemistry, Franklin Marshall College, Lancaster, PA 17604-3303, USA
X. Liu
Affiliation:
Department of Chemistry, Franklin Marshall College, Lancaster, PA 17604-3303, USA
V. Weidner
Affiliation:
Department of Chemistry, Franklin Marshall College, Lancaster, PA 17604-3303, USA
P. McWilliams
Affiliation:
Department of Chemistry, Franklin Marshall College, Lancaster, PA 17604-3303, USA
K. Martin
Affiliation:
Department of Chemistry and Biochemistry, Messiah College, Grantham, PA 17027-9800, USA
J. Lorgunpai
Affiliation:
Department of Chemistry and Biochemistry, Messiah College, Grantham, PA 17027-9800, USA
J. Haller
Affiliation:
Department of Chemistry and Biochemistry, Messiah College, Grantham, PA 17027-9800, USA
R. W. Schaeffer
Affiliation:
Department of Chemistry and Biochemistry, Messiah College, Grantham, PA 17027-9800, USA

Abstract

Syntheses for the three members of the copper hydroxyl nitrate family – the polymorphs rouaite and gerhardtite, and likasite – are presented along with powder diffraction data and unit-cell parameters. The solubilities, determined in 0.05 M KNO3 solution after equilibration at 25°C for 10 days were used to calculate activity-based solubility product constants. The Gibbs energies of formation, obtained from the solubility products, are –653.2±0.7 kJ/mol, –655.1±1.2 kJ/mol and –1506.4±1.1 kJ/mol, for rouaite, gerhardtite, and likasite (Cu3NO3(OH)5·2H2O), respectively. The values for the polymorphs rouaite and gerhardtite validate the observations of Oswald that gerhardtite is the most stable polymorph at room temperature and that the preparation of predominantly rouaite in syntheses carried out at room temperature must be due to the metastability and low rate of conversion to the more stable gerhardtite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bjerrum, J. (1931) Copper ammonium complex salts. I. Determination of the equilibrium constants of the copper-ammine ions by means of ammonia-tension measurements, and by means of the solulbility data of a basic copper nitrate (gerhardtite). Kongelige Danske Videnskabernas Selskab.Math. -fysiske Meddelelser, 11, 58.Google Scholar
Bovio, B. and Locchi, S. (1982) Crystal structure of the orthorhombic basic copper nitrate, Cu2(OH)3NO3 . Journal of Crystallographic and Spectroscopic research, 12, 507517.CrossRefGoogle Scholar
Chernorukov, N.G., Mikhailov, Yu.N., Knyazev, A.V., Kanishcheva, A.S. and Bulanov, E.N. (2005) Synthesis of trihydroxonitratodicopper(II) and refinement of its crystal structure, Zhurnal Neorganicheskoi Khimii, 50, 775778.Google Scholar
Declercq, J.P., Germain, G. and Piret, P. (1977) Composition and structure of likasite, Cu3P2H3(NO3)(OH)2·H2O. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, B33, 1422-1427.Google Scholar
Deliens, M. (1973) La likasite de Likasi (République de Zaïre). Bulletin de la Société Française de Mineralogie et Cristallographie, 96, 143145.CrossRefGoogle Scholar
Effenberger, H. (1983) Refinement of the crystal structure of monoclinic di-copper(II) trihydroxide nitrate (Cu2(NO3)(OH)3) Zeitschrift für Kristallographie, 165, 127135.CrossRefGoogle Scholar
Effenberger, H. (1986) Likasite, Cu3(OH)5(NO3)·2H2O: revision of the chemical formula and redeterminjation of the crystal structure. Neues Jahrbuch für Mineralogie, Monatshefte, 101110.Google Scholar
Frost, R.L., Erickson, K.L., Weier, M.L., Leverett, P., Williams, P.A. (2005) Raman spectroscopy of likasite at 298 and 77K. Spectrochimica Acta, Part A; Molecular and Biomolecular Spectroscopy, 61A, 607612.CrossRefGoogle Scholar
Gerhardt, C. (1846 a) Faite pour servir a l’histoire des nitrates et des nitrites. Annales de Chimie et de Physique, 18, 178188.Google Scholar
Gerhardt, C., (1846 b) ber salpetersure und salpetrigsure Salze. Journal für Praktische Chemie, 39, 136142.CrossRefGoogle Scholar
Ilcheva, L. and Bjerrum, J. (1976) Metal amine formation in solution XVII. Stability constants of copper(II) methylamine and diethlamine complexes obtained from solubility measurements with gerhardtite, (Cu(OH)1.5(NO3)0.5) Acta Chemica Scandinavica, Series A: Physical and Inorganic Chemistry, A30, 343350.CrossRefGoogle Scholar
International Centre for Diffraction Data (ICDD) (2004) JCPDS, Powder Diffraction File, PDF-2 (2004), International Centre for Diffraction Data, Newton Square, Pennsylvania, USA.Google Scholar
Jambor, J.L. and Roberts, A.C. (2002) New mineral names. American Mineralogist, 87, 996999.Google Scholar
Jenkins, H.D.B. and Glaser, L. (2004) Difference rule - anew thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates. Journal of the American Chemical Society, 126, 15,80915,817.CrossRefGoogle Scholar
Latimer, W.M. (1952) The Oxidation States of the Elements and their Potentials in Aqueous Solutions. 2nd edition, Prentice-Hall, Inc., New Jersey, USA.Google Scholar
Marcus, Y. (1987) The thermodynamics of solvation of ions. Journal of the Chemical Society, Faraday Transactions 1, 83, 339349.CrossRefGoogle Scholar
Materials Data, Inc. (2006) JADE 8XRD Pattern Processing, Identification, and Quantification Software. Livermore, CA, USAGoogle Scholar
Oswald, H.R. (1961) Concerning natural and synthetic gerhardtite. Zeitschrift für Kristallographie, 116, 210219.CrossRefGoogle Scholar
Sal’nikov, Yu.I., Sidorov, Yu.V. and Burkov, K.A. (2008) Solubility products of basic salts Cu2(OH3NO3 and Hg3O2(NO3)2 determined from dilatometric data. Russian Journal of Applied Chemistry, 81, 12961298.CrossRefGoogle Scholar
Sarp, H., Cerny, R. and Guenee, L. (2001) Rouaite, Cu2(NO3)(OH)3, un nouveau mineral: sa description et sa structure cristalline (Alpes-Maritimes, France). Rivera Scientifique, 85, 312.Google Scholar
Schoef, A., Borcher, W. and Kohler, K. (1955) Likasite, Cu12(OH)14(NO3)4(PO4)2, anew mineral. Bulletin de la Societé Française de Mineralogie et de Cristallographie, 78, 8488.Google Scholar
Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L. (1982) The NBS tables of chemical thermodynamic properties. Journal of Physical and Chemical Reference Data, 11, Supplement 2.Google Scholar
Wells, H.L. and Penfield, S.L. (1885) Gerhardtite and artificial basic cupric nitrates. American Journal of Science, 30, 5057.CrossRefGoogle Scholar
Yoder, C.H. and Flora, N.J. (2005) Geochemical applications of the simple salt approximation to the lattice energies of complex materials. American Mineralogist, 90, 488496.CrossRefGoogle Scholar
Yoder, C.H. and Rowand, J.P. (2006) Applications of the simple salt lattice energy approximation to the solubility of minerals. American Mineralogist, 91, 747752.CrossRefGoogle Scholar
Yoder, C.H., Gotlieb, N.R. and Rowand, A.L. (2010) The relative stability of stoichiometrically related natural and synthetic double salts. American Mineralogist, 95, 4751.CrossRefGoogle Scholar