Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T15:44:32.185Z Has data issue: false hasContentIssue false

Supra-subduction zone ophiolites of Central Anatolia: geochemical evidence from the Sarikaraman Ophiolite, Aksaray, Turkey

Published online by Cambridge University Press:  05 July 2018

M. K. Yaliniz
Affiliation:
Dept. of Geological Engineering, Middle East Technical University, Ankara, Turkey
P. A. Floyd
Affiliation:
Department of Earth Sciences, University of Keele, Staffordshire, ST5 5BG, U.K.
M. C. Göncüoğlu
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey

Abstract

The Central Anatolian Crystalline Complex (CACC), situated between the northern and southern oceanic strands of Neotethys, contain a number of little-studied ophiolitic bodies of late Cretaceous age that have a bearing on the Mesozoic development of this region. The pillow lavas and sheeted dykes of the Sarikaraman Ophiolite were originally a comagmatic differentiated series of vesicular, aphyric and olivine-poor, plagioclase—clinopyroxene phyric tholeiites, but now exhibit greenschist facies assemblages. A set of late dolerite dykes cross-cutting the whole volcanic sequence are more chemically evolved and were probably derived from a different source. Relative to N-MORB the lavas and dykes are enriched in some LIL elements (K, Rb, Cs, U, Th and Sr) and depleted in HFS elements (Nb, Ta, Hf, Zr, Ti and Y) and light REE. In terms of immobile elements the ophiolitic basalts have the broad chemical characteristics of island are tholeiites that were formed in a supra-subduction zone setting, whereas the late dykes are more akin to N-MORB. In this respect the Sarikaraman Ophiolite is similar to other ophiolites found in the eastern Mediterranean region and emphasizes the preservation of this particular environment in the CACC. If all the Central Anatolian Ophiolites (of which the Sarikaraman Ophiolite is one example) were derived via southward thrusting from the Vardar-Izmir-Ankara-Erzincan Ocean branch to the north, age relationships suggest that this segment of ocean crust was relatively short-lived before obduction onto the CACC.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, S.G., Bortolotti, V. and Paserini, P. (1976) Major structural events related to ophiolites of the Tethyan Belt. Ofioliti, 1, 532.Google Scholar
Alabaster, T., Pearce, J.A. and Malpas, J. (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolitic complex. Contrib. Mineral. Petrol., 81, 168–83.CrossRefGoogle Scholar
Bernolulli, D., Graciansky, P.C. and Monod, O. (1974) The extension of the Lycian Nappes (SW Turkey) into the southern Aegean islands. Eclogae Geol. Helv., 67, 3990.Google Scholar
Best, M.G. (1975) Amphibole-bearing cumulate inclusions, Grand Canyon, Arizona, and their bearing on silica-undersaturated hydrous magmas in the upper mantle. J. Geol. Sac., London, 128, 267–71.Google Scholar
çapan, U. and Floyd, P.A. (1985) Geochemical and petrographic features of metabasalts within units of the Ankara melange, Turkey. Ofioliti, 10, 3—18.Google Scholar
Capedri, S., Venturell, G., Bocchi, G., Dostal, J., Garuti, G. and Rossi, A. (1980) The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece. Contrib. Mineral. Petrol. 74, 189—200.CrossRefGoogle Scholar
Coleman, R.G. (1977) Ophiolites., Springer, Berlin, 229pp.CrossRefGoogle Scholar
Floyd, P.A. (1993) Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara melange, central Turkey. J. geol. Soc., London, 150, 541–50.CrossRefGoogle Scholar
Floyd, P.A. and Castillo, P.R. (1992) Geochemistry and petrogenesis of Jurassic ocean crust basalts, ODP Leg 129, Site 801. In Proceedings ofODP, Scientific Results(Larson, R., Launcelot, Y.. et aleds.), 129, 361—88. College Station, Texas.Google Scholar
Floyd, P.A. and Winchester, J.A. (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem. Geol., 21, 291306.CrossRefGoogle Scholar
Gass, I.G. and Smewing, J.D. (1973) Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos massif, Cyprus. Nature, London, 242, 26–9.CrossRefGoogle Scholar
Göncüoğlu, M.C. (1982) Zircon U/Pb ages from the Nigde Massif. Bull. Geol. Soc., Turkey, 25, 61—6.Google Scholar
Göncüoğlu, M.C. (1990) Subophiolitic metamorphics in the Kutahya-Bolkardag Belt, northern margin of the Menderes massif, N.W. Anatolia. Ofioliti, 15, 340–5.Google Scholar
Göncüoğlu, M.C. and Türeli, K. (1993a) Orta Anadolu Ofiyoliti plajiyogranitlerinin petrolojisi ve jeoldina- mik yorumu (Aksaray-Turkiye). Doga Turk Yerbilimleri Dergisi, 2, 195203.Google Scholar
Göncüoğlu, M.C. and Türeli, K. (1993b) Petrology and geodynamic interpretation of plagiogranites from Central Anatolian ophiolites (Aksaray-Turkiye). Ofioliti, 18, 187.Google Scholar
Göncüoğlu, M.C. and Ttireli, K. (1994) Alpine collisional-type granitoids from western Central Anatolian Crystalline Complex, Turkey. J. Kocaeli Univ. Earth Sci. section 1, 3946.Google Scholar
Göncüoğlu, M.C., Toprak, V., Erler, A. and Kusca, I. (1991) Orta Anadolu Masifi Bati Kesiminin Jeolojisi, Bolum I: Guney Kesim. TPAO Rap. no.2909, 176pp.Google Scholar
Göncüoğlu, M.C., Erler, A., Toprak, V., Yaliniz, K., Olgum, E. and Rojay, B. (1992a) Orta Anadolu Masifinin Bati Kesiminin Jeolojisi, Bolum II: Orta Kesim. TPAO Rap, no.3155, 76pp.Google Scholar
Göncüoğlu, M.C., özcan, A., Turhan, N. and Isik, A. (1992b) Stratigraphy of the Kutahya Region. Guide book for a geotraverse across suture zones in N.W. Anatolia, 38, MTA Publication Ankara.Google Scholar
Görcür, N., Oktay, F.Y., Seymen, I. and Sengor, A.M.C. (1984) Paleotectonic evolution of Tuz Golu Basin complex, central Turkey. In The Geological Evolution of the Eastern Mediterranean(Dixon, J.E. and Robertson, A.H.F., eds.), Geol. Soc. Spec. Publ., 17, Blackwell, Oxford, 81—96.Google Scholar
Hart, S.R., Erlank, A.J. and Kable, E.J.D. (1974) Sea floor basalt alteration: some chemical and Sr isotopic effects. Contrib. Mineral. Petrol., 44, 219—30.Google Scholar
Hawkesworth, C.J., O'Nions, R.K., Pankhurst, R.J., Hamilton, P.J. and Evensen, N.M. (1977) A geochemical study of island arc and back-arc thoieiites from the Scotia Sea. Earth Planet. Sci. Lett., 36, 253–62.CrossRefGoogle Scholar
Humphris, S.E. (1984) The mobility of the rare earth elements in the crust. In Rare Earth Element Geochemistry(Henderson, P., ed.), Elsevier, Amsterdam, 317—42.CrossRefGoogle Scholar
Humphris, S.E. and Thompson, G. (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta, 42, 127–36.CrossRefGoogle Scholar
Hynes, A. (1980) Carbonitization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, S.E. Quebec. Contrib. Mineral. Petrol., 75, 7987.CrossRefGoogle Scholar
Juteau, T. (1980) Ophiolites of Turkey. Ofioliti, 2, 199237.Google Scholar
Koçyiğit, A. (1991) An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo- Tethys in Turkey. Bull. Geol. Soc. Amer., 103, 2236.2.3.CO;2>CrossRefGoogle Scholar
Koçyiğit, A., Ozkan, S. and Rojay, B. (1988) Examples from the fore-arc basin remnants at the active margin of the Northern neo-Tethys: development and emplacement ages of the Anatolian Nappe. METU J. Pure and AppL ScL A21, 183—211.Google Scholar
McCulloch, M.T. and Gamble, J.A. (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett., 102, 358–74.CrossRefGoogle Scholar
Moores, E.M. and Vine, F.J. (1971) The Troodos Massif, Cyprus, and other ophiolites as oceanic crust: evaluation and implications. Phil. Trans. Roy. Soc., LondonA268, 443—66.Google Scholar
Nicholas, A. and Jackson, E.D. (1972) Repartitions en deux provinces des peridotites des chaines alpines longeant la Mediterranee, implications geotectoni-ques. Bull. Swiss Min. Petr., 52, 479–95.Google Scholar
Onen, A.P. and Hall, R. (1993) Ophiolites and related metamorphic rocks from the Kutahya region, northwest Turkey. Geol. J., 28, 399412.CrossRefGoogle Scholar
Özcan, A., Gonctioglu, M.C. and Turhan, N. (1989) Kutahya-Cifteler-Bayat-Issaniye Yoresinin Temel Jeolojisi. MTA Rap.no. 8118, 142 pp.Google Scholar
Özgül, N. (1976) Toroslarin bazi temel jeoloji ozellikleri. Turkiye Jeol. Kur. BuL, 19, 6578.Google Scholar
Pearce, J.A. (1979) Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. In Proc. Int. Ophiolite Symp.(Panayiotou, A., ed.), Geo). Surv. Cyprus, Nicosia, 261–72.Google Scholar
Pearce, J.A. (1982) Trace element characteristics of lavas from destructive plate boundaries. In Andesites: Orogenic Andesites and Related Rocks(Thorpe, R.S., ed.), J. Wiley & Sons, Chichester, 525–48.Google Scholar
Pearce, J.A. (1983) Role of the subcontinental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths(Hawkesworth, C.J. and Norry, M.J., eds.), Shiva Publishing, Cheshire, 230—49.Google Scholar
Pearce, J.A., and Cannt, J.R. (1973) Tectonic setting of basaltic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19, 290300.CrossRefGoogle Scholar
Pearce, J.A., Lippard, S.J. and Roberts, S. (1984) Characteristics and tectonic significance of supra- subduction zone ophiolites. In Marginal Basin Geology(Kokelaar, B.P. and Howells, M.F., eds.), Geol. Soc. Spec. Publ., 16, Blackwell, Oxford, 7794.Google Scholar
Rice-Birchall, B. and Floyd, P.A. (1988) Geochemical and source characteristics of the Tintagel Volcanic Formation. Proc. Ussher Soc., 7, 52–5.Google Scholar
Ricou, L.E. (1971) Le coissant ophiolitique peri-arabe: un ceinture de nappes mises en place au Cretace superieur. Rev. Geogr. Phys. Geol. Dynam., 13, 327–49.Google Scholar
Ricou, L.E., Macoux, J. and Whitechurch, H. (1984) The Mesozoic organization of the Taurides: one or several ocean basins? In The Geological Evolution of the Eastern Mediterranean(Dixon, J.E. and Robertson, A.H.F., eds.), Geol. Soc. Spec. Publ., 17, Blackweli, Oxford, 349—60.Google Scholar
Robertson, A.H.F. and Dixon, J.E. (1985) Introduction: aspects of the geological evolution of the eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean(Dixon, J.E. and Robertson, A.H.F., eds.), Geol. Soc. Spec. Publ., 17, Blackwell, Oxford, 1—74.Google Scholar
Rocci, G., Ohnenstetter, D., and Ohnenstetter, M. (1975) La dualite des ophiolites tethysiennes. Petrologie, 1, 172–4.Google Scholar
Saunders, A.D. and Tarney, J. (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. InMarginal Basin Geology. (Kokelaar, B.P. and Howells, M.F., eds.), Geol. Soc. Spec. Publ., 16, Blackwell, Oxford, 59—76.Google Scholar
Saunders, A.D., Tarney, J., Marsh, N.G., and Wood, D.A. (1979) Ophiolites as ocean crust or marginal basin crust: a geochemical approach. In Proc. Int. Ophiolite Symp.(Panayiotou, A., ed.), Geol. Surv. Cyprus, Nicosia, 193—204.Google Scholar
Sengör, A.M.C. (1985) Structural classification of the tectonic history of Turkey. Ketin Symp. Proc., Ankara. Geol. Soc. Turkey Spec. PubL, 37—62.Google Scholar
Sengor, A.M.C. and Yilmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181241.CrossRefGoogle Scholar
Shervais, J.W. (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59, 101–18.CrossRefGoogle Scholar
Smewing, J.D. and Potts, P.J. (1976) Rare earth abundances in basalts and metabasalts from the Troodos Massif, Cyprus. Contrib. Mineral. Petrol., 57, 245–58.CrossRefGoogle Scholar
Smith, A.G. and Spry, J.G. (1984) A half-ridge transform model for the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean(Dixon, J.E. and Robertson, A.H.F., eds.), Geol. Soc. Spec. Publ., 17, Blackwell, Oxford, 8196.Google Scholar
Smith, R.E. and Smith, S.E. (1976) Comments on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas. Earth Planet. Sci. Lett., 32, 114–20.CrossRefGoogle Scholar
Spooner, E.T.C. and Fyfe, W.S. (1973) Sub-seafloor metamorphism, heat and mass transfer. Contrib. Mineral. Petrol., 42, 287304.CrossRefGoogle Scholar
Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (Saunders, A.D. and Norry, M.J., eds.), Geol. Soc. Spec. Publ., 42, Blackwell, Oxford, 313—45.Google Scholar
Thompson, G. (1991) Metamoiphic and hydrothermal processes: basalt-seawater interactions. In Oceanic Basalts(Floyd, P.A., ed.), Blackie, Glasgow, 148–73.Google Scholar
Thy, P., Brooks, C.K. and Walsh, J.N. (1985) Tectonic and petrogenetic implications of major and rare earth element chemistry of Troodos glasses, Cyprus. Lithos, 18, 165–78.CrossRefGoogle Scholar
Venturelli, G., Thorpe, R.S. and Potts, P.J. (1981) Rare earth and trace element characteristics of ophiolitic metabasalts from the Alpine-Apennine. Earth Planet. Set. Lett., 53, 109–23.CrossRefGoogle Scholar
Whitechurch, H., Jutcau, T. and Montigny, R. (1984) Role of the Eastern Mediterranean ophiolites (Turkey, Syria, Cyprus) in the history of the Neo- Tethys. In The Geological Evolution of the Eastern Mediterranean(Dixon, J.E. and Robertson, A.H.F., eds.), Geol. Soc. Spec. Publ., 17, Blackwell, Oxford, 301–17.Google Scholar
Winchester, J.A. and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile element. Chem. Geol., 20, 325–43.CrossRefGoogle Scholar
Wood, D.A. (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett., 56, J t —30.Google Scholar
Wood, D.A., Joron, J.L. and Treuil, M. (1979) A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett., 45, 326–36.CrossRefGoogle Scholar