Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T09:30:41.615Z Has data issue: false hasContentIssue false

Sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)(S5)(SH), a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions

Published online by Cambridge University Press:  02 January 2018

A. N. Sapozhnikov
Affiliation:
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Science, 1a Favorsky str., Irkutsk, 664033, Russia
E. V. Kaneva*
Affiliation:
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Science, 1a Favorsky str., Irkutsk, 664033, Russia
L. F. Suvorova
Affiliation:
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Science, 1a Favorsky str., Irkutsk, 664033, Russia
V. I. Levitsky
Affiliation:
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Science, 1a Favorsky str., Irkutsk, 664033, Russia
L. A. Ivanova
Affiliation:
Institute of the Earth’s crust, Siberian Branch of Russian Academy of Science, 128 Lermontov str., Irkutsk, 664033, Russia
*

Abstract

Sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)(S5)(SH), cell parameters a = 12.9567(6) Å, c = 10.7711(5) Å, space group P31c, is a new mineral belonging to the cancrinite group. It was found at Malaya Bystraya lazurite deposit, Lake Baikal area, Eastern Siberian Region, Russia, associated with lazurite, calcite, diopside, phlogopite and pyrite. The mineral develops at the margins of masses of lazurite, replacing it in some areas with the formation of nonequilibrium lazurite-diopside-sulfhydrylbystrite association. It is translucent, yellow to orange, with vitreous lustre, yellow streak and Mohs hardness of 4.5–5. The empirical formula, based on 12 (Si + Al), is Na5.17K1.87Ca0.99[Al6.01Si5.99O24](S5)0.862–(SH0.86)Cl0.07, Z = 2. The crystal structure of sulfhydrylbystrite may be described as an ABAC stacking of six-membered rings of SiO4 and AlO4 tetrahedra and extra-framework cations and anions located within structural cages. There are two type of cages, cancrinite and losod, stacked into chains at (0, 0, z) and (⅔, ⅓, z), respectively. The cancrinite cage hosts Ca2+ and (SH) ions, whereas the (S5)2– polyanion is in the losod cage associated with Na+ and K+ cations. In addition, (SH) and (S5)2– anions are detected in the structure of a mineral for the first time.

For comparison, a structural and compositional study of a bystrite sample from the same deposit was carried out. Bystrite is confirmed to contain pentasulfide anions in the losod cages, similar to those of sulfhydrylbystrite, in contrast to previous studies. However, bystrite has chloride in cancrinite cages, whereas sulfhydrylbystrite has hydrosulfide in that position. The unit-cell parameters are distinctly different: bystrite has a = 12.8527(6) Å, c = 10.6907(5) Å in the same P31c space group.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, S.M. and Senin, V.G. (2006) Genesis and composition of lazurite in magnesian skarns. Geochemistry International, 44(10), 976-988.Google Scholar
Ballirano, P., Maras, A. and Buseck, P.R. (1996) Crystal chemistry and IR spectroscopy of Cl-and SO4-bearing cancrinite-like minerals. American Mineralogist, 81, 10031012.CrossRefGoogle Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Bonaccorsi, E. and Merlino, S. (2005) Modular micro-porous minerals: cancrinite-davyne group and C—S—H phases. Pp. 241290 in: Micro-and Mesoporous Mineral Phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Bonaccorsi, E., Ballirano, P. and Cámara, F. (2012) The crystal structure of sacrofanite, the 74 Å phase of the cancrinite-sodalite supergroup. Microporous and Mesoporous Materials, 147, 318326.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker (2003) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2008) TOPAS V4: General profile and structure analysis software for powder diffraction data. Bruker AXS Inc., Karlsruhe, Germany.Google Scholar
Böttcher, P. (1979) Synthesis and crystal structure of the dirubidiumpentachalcogenides Rb2S5 and Rb2Se5 . Zeitschrifit für Kristallographie, 150, 6573.CrossRefGoogle Scholar
Böttcher, P. and Keller, R. (1984) The crystal structure of α-Na2S5. Zeitschrifit Naturforsch, 39b, 577581 [in German].CrossRefGoogle Scholar
Böttcher, P. and Trampe, G. (1985) Synthesis and crystal structure of Cs2S5'H2O. Zeitschrifit Naturforsch, 40b, 321325 [in German].CrossRefGoogle Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G., Mottana, A., Bindi, L., Gunter, M.E. and Sebastiani, M. (2010) Fantappieite, a new mineral of the cancrinite-sodalite group with a 33-layer stacking sequence: occurrence and crystal structure. American Mineralogist, 95, 472480.CrossRefGoogle Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G., Gunter, M. E., Sebastiani, M. and Cavallo, A. (2012) Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: occurrence and crystal structure. American Mineralogist, 97, 14941504.CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Olysych, L.V., Massa, W., Yakubovich, O.V., Zadov, A.E., Rastsvetaeva, R.K. and Vigasina, M.F. (2010) Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola peninsula. Geology of Ore Deposits, 52(8), 778790.CrossRefGoogle Scholar
Coates, J. (2000) Interpretation of Infrared spectra, a practical approach. Pp. 1081510837 in: Encyclopedia of Analytical Chemistry (R.A. Meyers, editor). John Wiley and Sons Ltd, Chichester, UK.Google Scholar
Della Ventura, G., Ballatreccia, F., Parodi, G.C., Cámara, E and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)] [Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.CrossRefGoogle Scholar
Della Ventura, G., Gatta, D., Redhammer, G.J., Bellatreccia, F., Loose, A. and Parodi, G.C. (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals, 36, 193206.CrossRefGoogle Scholar
Hawthorne, EC, Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results. The Canadian Mineralogist, 33, 907911.Google Scholar
Ivanov, V.G. and Sapozhnikov, A.N. (1985) Lazurites of USSR. Nauka, Novosibirsk, Russia.Google ScholarPubMed
Kelly, B. and Woodward, P. (1976) Crystal structure of dipotassium pentasulphide. Journal of the Chemical Society, Dalton Transaction, 14, 13141316.CrossRefGoogle Scholar
Khomyakov, A.P., Camara, E and Sokolova, E. (2010) Carbobystrite, Na8[Al6Si6O24](CO3)-4H2O, a new cancrinite-group mineral species from the Khibina alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 48, 291300.CrossRefGoogle Scholar
Leclerc, B. and Kabre, T.S. (1975) Structure crystalline du sulfure de thallium Tl2S5 . Acta Crystallografica, B31 (6), 16751677.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
McCusker, L.B., Liebau, E and Engelhardt, G. (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Reccomendations 2001). Pure and Applied Chemistry, 73, 381394.CrossRefGoogle Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on new minerals and mineral names: procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 316.Google Scholar
Pekov, I.V., Olysych, L.V., Zubkova, N.V., Chukanov, N. V., Van, K.V. and Pushcharovsky, D.Yu. (2011) Depmeierite Na8[Al6Si6O24](PO4,CO3)1_x-3H2O (x<0.5): a new cancrinite-group mineral species from the Lovozero alkaline pluton of the Kola peninsula. Geology of Ore Deposits, 53(7) 604613.CrossRefGoogle Scholar
Pobedimskaya, E.A., Terentieva, L.E., Sapozhnikov, A. N., Kashaev, A.A. and Dorokhova, G.I. (1991) Crystal structure of bystrite. Soviet Physics Doklady, 36, 553556 [in Russian].Google Scholar
Sapozhnikov, A.N., Kaneva, E.V., Suvorova, L.F., Levitsky, V.I., Ivanova, L.A., Mitichkin, M.A. and Barash, I.G. (2015) Sulfhydrylbystrite, IMA 2015-010. CNMNC Newsletter No. 25, June 2015, page 534. Mineralogical Magazine, 79, 529535.Google Scholar
Schnering, H.G., Goh, N.K. and Peters, K. (1985) Crystal structure of diammoniumpentasulfide (NH4)2S5 . Zeitschrifit für Kristallographie, 172, 153158.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2003) SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.Google Scholar
Sieber, W and Meier, W.M. (1974) Formation and properties of Losod, a new sodium zeolite. Helvetica ChimicaActa, 57, 15331549.CrossRefGoogle Scholar
Sokolov, Yu.A., Maksimov, B.A., Ilyukhin, V.V. and Belov, N.V (1978) The low temperature determination of the crystal structure of sodium alumogermanate Na8Al6Ge6O24(CO3)(H2O)3 . Doklady Akademii Nauk SSSR, 243, 113115 [in Russian].Google Scholar
Steudel, R. (2003) Inorganic polysulfides Sn and radical anions Sn”. Pp. 127152 in: Elemental Sulfur and Sulfur-Rich Compounds II. Topics in Current Chemistry, 231. Springer, Heidelberg-New York.CrossRefGoogle Scholar
Watkin, D.J. (1994) The control of difficult refinements. Acta Crystallografica, A50, 411–437.CrossRefGoogle Scholar
Wong, M.W (2003) Quantum-chemical calculations of sulfur-rich compounds. Topics in Current Chemistry, 231, 129.CrossRefGoogle Scholar