Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:47:33.649Z Has data issue: false hasContentIssue false

Substitution of ‘small’ divalent cations (e.g. Mg) for Si and Al in the nepheline tetrahedral framework: 1. Calculation of atomic formulae and stoichiometry parameters

Published online by Cambridge University Press:  16 March 2022

C. Michael B. Henderson*
Affiliation:
School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK Consultant, Science and Technology Funding Council, Daresbury Laboratory, Warrington WA4 4AD, UK
Ítalo Lopes de Oliveira
Affiliation:
Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
*
*Author for correspondence: C. Michael B. Henderson, Email: michael.henderson@manchester.ac.uk

Abstract

A recent review paper on nepheline solid solutions dealt mainly with sodic varieties from nepheline syenites and differentiated alkali basaltic sills. Excel spreadsheets were provided for recalculating cell formulae in terms of the stoichiometric parameters ΔAlcavity cation charge and ΔTframework charge and molecular percentages of the end-members Ne, Ks, Ca-nepheline and excess Si (Qxs). Small amounts of tetrahedral divalent species (usually <0.10 wt.% though with up to 0.33 wt.% MgO) were related to a stuffed-tridymite end-member of ideal formula K8Mg4Si12O32 (denoted KsT2+-nepheline), although the equations used to calculate these end-members only considered Si, Al and Fe3+ as tetrahedral framework species. Recently, K-rich nepheline and kalsilite which contain up 0.54 wt.% MgO have been found in some feldspar-free mafic potassic volcanic rocks from central Brazil. Equations have been developed to deal rigorously with the presence of significant amounts of Mg (and Mn) in recalculating nepheline solid-solution parameters. In two related communications reworked spreadsheets are provided with examples of their use. High quality microprobe analyses of nepheline and kalsilite from magmatic rocks must include analyses for Mg and Mn and, if possible, estimates of Fe2+ contents.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Allan, J.F. and Carmichael, I.S.E. (1984) Lamprophyric lavas in the Colima graben, S.W. Mexico. Contributions to Mineralogy and Petrology, 88, 203216.10.1007/BF00380166CrossRefGoogle Scholar
Andersen, T., Elburg, M. and Erambert, M. (2017) The miaskitic-to-agpaitic transition in peralkaline nepheline syenite (white foyaite) from the Pilanesberg Complex, South Africa. Chemical Geology, 455, 166181, http://dx-doi.org/10.1016/j.chemgeo.2016.08.020CrossRefGoogle Scholar
Barth, T.F.W. (1963) The composition of nepheline. Schweizer Mineralogische Petrologische Mitteilungen, 43, 153164.Google Scholar
Baudouin, C. (2016) Volcanisme alcalin associé à l'initiation de la rupture continentale: Rift East Africain, Tanzanie, bassin de Manyara. PhD dissertation, Université Montpellier, France [available at https://tel.archives-ouvertes.fr/tel-01563231v2]Google Scholar
Berkesi, M., Bali, E., Bodnar, R.J., Szabo, A. and Guzmics, T. (2020) Carbonatite and highly peralkaline nephelinite melts from Oldoinyo Lengai volcano, Tanzania: the role of natrite-normative fluid degassing. Gondwana Research, 85, 7683. https://doi.org/10.1016/j.gr.2020.03.013.CrossRefGoogle Scholar
Blancher, S., D'Arco, P., Fonteilles, M. and Pascal, M.L. (2010) Evolution of nepheline from mafic to highly differentiated members of the alkaline series: the Messum complex, Namibia. Mineralogical Magazine, 74, 413432.10.1180/minmag.2010.074.3.415CrossRefGoogle Scholar
Brown, A.P., Hillier, S. and Brydson, R.M.D. (2017) Quantification of Fe-oxidation state in mixed-valence minerals: a geochemical application of EELS revisited. IOP Conference Series, Journal of Physics, Series 902, 012016, https://doi.org/10.1088/1742-6596/902/1/012016Google Scholar
Buerger, M.J. (1954) The stuffed derivatives of the silica structures. American Mineralogist, 39, 600614.Google Scholar
Carrière, C., Dillmann, P., Neff, D., Dynes, J.J., Linard, Y., Michau, N. and Martin, C. (2019) Use of nanoprobes to identify iron-silicates in a glass/iron/argillite system in deep geological disposal. Corrosion Science, 158, https://doi.org/10.1016/j.corsci.2019.108104.CrossRefGoogle Scholar
Cressey, C., Henderson, C.M.B. and van der Laan, G (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals: a new probe for mineralogical and geochemical research. Physics and Chemistry of Minerals, 20, 111119.10.1007/BF00207204CrossRefGoogle Scholar
Cucciniello, C., le Roux, A.P., Jourdan, F., Morra, V., Grifa, C., Franciosi, L. and Melluso, L. (2018) The mafic alkaline volcanism of SW Madagascar (Ankililoaka, Tulear region): 40Ar/39Ar ages, geochemistry and tectonic setting. Journal of the Geological Society, 175, 627641, https://doi.org//10.1144/jgs2017-139CrossRefGoogle Scholar
Dawson, B.A. and Hill, P.G. (1998) Mineral chemistry of a peralkaline combeite-lamprophyllite nephelinite from Oldoinyo-Lengai, Tanzania. Mineralogical Magazine, 62, 179196.CrossRefGoogle Scholar
Dawson, B.A., Smith, J.V. and Steele, I.M. (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. Journal of Petrology, 36, 797826.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction To The Rock-Forming Minerals. Longman, UK, 528 pp.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2004) Rock-Forming Minerals, Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. Volume 4B. The Geological Society, London, 982 pp.Google Scholar
Dollase, W.A. and Thomas, W.M. (1978) The crystal chemistry of silica-rich, alkali-deficient nepheline. Contributions to Mineralogy and Petrology, 66, 311318.10.1007/BF00373415CrossRefGoogle Scholar
Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineralogical Magazine, 51, 431435, https://doi.org/10.1180/minmag.1987.51.361.10CrossRefGoogle Scholar
Edgar, A.D. (1979) Mineral chemistry and petrogenesis of ultrapotassic-ultramafic volcanic rocks. Contributions to Mineralogy and Petrology, 71, 171175.10.1007/BF00375433CrossRefGoogle Scholar
Fiege, A., Ruprecht, P., Simon, A.C., Bell, A.S., Gőttlicher, J., Newville, M., Lanzirotti, T. and Moore, G. (2017) Calibration of Fe XANES for high-precision determination of Fe oxidation states in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources. American Mineralogist, 102, 369380, http://dx.doi.org/10.2138/am-2017-5822CrossRefGoogle Scholar
Gibb, F.G.F. and Henderson, C.M.B. (1978) The petrology of the Dippin sill, Isle of Arran. Scottish Journal of Geology, 14, 127.10.1144/sjg14010001CrossRefGoogle Scholar
Hamada, M., Akasaka, M. and Ohfuji, H. (2019) Crystal chemistry of K-rich nepheline in nephelinite from Hamada, Shimane Prefecture, Japan. Mineralogical Magazine, 83, 239247.10.1180/mgm.2018.133CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1991) The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24](OH)2.3H2O. The Canadian Mineralogist, 29, 377383.Google Scholar
Henderson, C.M.B. (2020) Nepheline solid solution compositions: stoichiometry revisited, reviewed, clarified and rationalised. Mineralogical Magazine, 84, 813838, https://doi.org/10.1180/mgm.2020.78CrossRefGoogle Scholar
Henderson, C.M.B. (2021) Composition, thermal expansion and phase transitions in framework silicates: revisitation and review of natural and synthetic analogues of nepheline-, feldspar- and leucite-mineral groups. Solids, 2, 149, https://doi.org/10.3390/solids2010001CrossRefGoogle Scholar
Henderson, C.M.B. and Foland, K.F. (1996) Ba- and Ti-rich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. The Canadian Mineralogist, 34, 12411252.Google Scholar
Kjarsgaard, B. and Peterson, T. (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Mineralogy and Petrology, 43, 293314.10.1007/BF01164532CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Petrone, C.M., Guarino, V. and Sinha, A.K. (2012) Mineralogy and magmatic affinity of the Jasra intrusive complex, Shillong Plateau, India. Mineralogical Magazine, 76, 10991117.10.1180/minmag.2012.076.5.03CrossRefGoogle Scholar
Melluso, L., Tucker, R.D., Cucciniello, C., le Roex, A.P., Morra, V., Zanetti, A. and Rakoroson, R.L. (2018) The magmatic evolution and genesis of the Quaternary basanite-trachyphonolite suite of Itasy (Madagascar) as inferred by geochemistry, Sr-Nd-Pb isotopes and trace element distribution in coexisting phases. Lithos, 310–311, 5064, https://doi.org/10.1016/j.lithos.2018.04.003CrossRefGoogle Scholar
Mitchell, R.H. and Dawson, J.B. (2007) The 24th September 2007 ash eruption of the carbonatite volcano Oldoinyo Lengai, Tanzania: mineralogy of the ash and implications for formation of a new hybrid magma type. Mineralogical Magazine, 71, 483492.CrossRefGoogle Scholar
Morgan, G.B. VI and London, D. (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. American Mineralogist, 90, 11311138.10.2138/am.2005.1769CrossRefGoogle Scholar
Oliveira, Í.L. and Henderson, C.M.B. (2022) Substitution of ‘small’ divalent cations (e.g. Mg) for Si and Al in the nepheline tetrahedral framework: 2. The occurrence of Mg-rich nepheline and kalsilite. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.25CrossRefGoogle Scholar
Paslick, C.R., Halliday, A.N., Lange, R.A., James, D. and Dawson, J.B. (1996) Indirect crustal contamination: evidence from isotopic and chemical equilibria from alkali basalts and nephelinites from northern Tanzania. Contributions to Mineralogy and Petrology, 125, 277292.10.1007/s004100050222CrossRefGoogle Scholar
Pattammattel, A., Leppert, V.J., Aronstein, P., Robinson, M., Mousavi, A., Sioutas, C., Forman, H.J. and O'Day, P.A. (2021) Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods. Atmospheric Environment, 245, 117988. https://doi.org/10.1016/j.atmosenv.2020.117988CrossRefGoogle ScholarPubMed
Peterson, T.D. (1989) Peralkaline nephelinites. 1. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa. Contributions to Mineralogy and Petrology, 101, 458478.CrossRefGoogle Scholar
Potts, P.J. (1987) A Handbook of Silicate Rock Analysis. Blackie Academic & Professional, Glasgow, UK.10.1007/978-94-015-3988-3CrossRefGoogle Scholar
Sahama, Th.G. (1954) Mineralogy of mafurite. Bulletin Commission Geologique Finlande, 166, 2128.Google Scholar
Schofield, P.F., Smith, A.D., Scholl, A., Doran, A., Covey-Crump, S.J., Young, A.T. and Ohldag, H. (2014) Chemical and oxidation-state imaging of mineralogical intergrowths: The application of X-ray photo-emission electron microscopy (XPEEM). Coordination Chemistry Reviews, 277–278, 3143, http://dx.doi.org/10.1016/j.ccr.2014.02.006CrossRefGoogle Scholar
Sgarbi, P.B.A. and Valença, J.G. (1995) Mineral and rock chemistry of Mata da Corda kamafugitic rocks (MG State, Brazil). Anais da Academia Brasileira Ciências, 67, 258270.Google Scholar
Suga, H., Suzuki, K., Usui, T., Yamaguchi, A., Sekizawa, O., Nitta, K., Takeichi, O. and Takahashi, Y. (2021) A new constraint on the physicochemical condition of Mars surface during the Amazonian Epoch based on chemical speciation for secondary minerals in martian nakhlites. Minerals, 11, https://doi.org/10.3390/min11050514.CrossRefGoogle Scholar
Tappe, S., Foley, S.F. and Pearson, D.G. (2003) The kamafugites of Uganda: a mineralogical and geochemical comparison with their Italian and Brazilian analogues. Periodico di Mineralogia, 72, 5177.Google Scholar
Wilkinson, J.F.G. and Hensel, H.D. (1994) Nephelines and analcimes in some alkaline igneous rocks. Contributions to Mineralogy and Petrology, 118, 7991.10.1007/BF00310612CrossRefGoogle Scholar
Zhu, Y.-S., Yang, J.-H., Sun, J.-H., Zhang, J-H. and Wu, F.Y. (2016) Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, N.E. China. Journal Asian Earth Sciences, 117, 184207.10.1016/j.jseaes.2015.12.014CrossRefGoogle Scholar
Supplementary material: File

Henderson and Oliveira supplementary material

Henderson and Oliveira supplementary material

Download Henderson and Oliveira supplementary material(File)
File 237.7 KB