Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T22:29:34.795Z Has data issue: false hasContentIssue false

Stabilization of trivalent Mn in natural tetragonal hydrogarnets on the join ‘hydrogrossular’—henritermierite, Ca3Mn23+ [SiO4]2[H4O4]

Published online by Cambridge University Press:  05 July 2018

U. Hålenius*
Affiliation:
Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden

Abstract

Four relatively intense and broad absorption bands centred at ∼12500, ∼19500, ∼21500 and ∼23000 cm–1 were recorded in polarized electronic single-crystal spectra of natural, optically uniaxial and pleochroic hydrogarnets with henritermierite contents ranging from 35 to 97 mol.%. These absorption bands arise from spin-allowed electronic d-d transitions in trivalent Mn located at the axially distorted six-coordinated site of the tetragonal hydrogarnet structure.

The crystal field stabilization energy (CFSE) for trivalent Mn at the Mn site, as derived from band energies, is ∼185 kJ/mol. This considerably higher CFSE for Mn3+ in tetragonal hydrogarnets as compared to cubic garnets (130 –145 kJ/mol) explains the natural occurrence of close to end-member tetragonal Mn3+-hydrogarnets while only limited Mn3+-substitution is observed in natural cubic garnets.

The fact that incorporation of Mn3+ at intermediate concentrations stabilizes the tetragonal hydrogarnets indicates the potential natural existence of a number of new, partially Mn3+-substituted, hydrogarnets, e.g. tetragonal Mn3+-bearing ‘hydroandradite’.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abs-Wurmbach, I., Langer, K., Seifert, F. and Tillmanns, E. (1981) The crystal chemistry of (Mn3+, Fe3+)-substituted andalusites (viridines and kanonaite), (Al1-x-yMn3+ xFe3+ y)2(OlSiO4): crystal structure refinements, Mössbauer and polarized optical absorption spectra. Zeit schri f t für Kristallographie, 155, 81113.Google Scholar
Armbruster, T. (1995) Structure refinement of hydrous andradite Ca3Fe1.54Mn0.20Al0.26(SiO4)1.65(O4H4)1.35 from the Wessels mine, Kalahari manganesefield, South Africa. European Journal of Mineralogy, 7, 12211225.CrossRefGoogle Scholar
Armbruster, T., Kohler, T., Libowitzky, E., Friedrich, A., Miletich, R., Kunz, M., Medenbach, O. and Gutzmer, J. (2001) Structure, compressibili ty, hydrogen bonding, and dehydration of the tetragonal hydrogarnet, henritermierite. American Mineralogist, 86, 147158.CrossRefGoogle Scholar
Aubry, A., Dusausoy, Y., Laffaille, A. and Protas, J. (1969) Détermination et étude de la structure cristalline de l’henritermierite, hydrogrenat de symétrie quadratiqu e. Bullé tin de la Socié te Franc¸aise de Minéralogie et de Cristallographie, 92, 126133.Google Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory, 2nd edition. Cambridge Topics in Mineral Physics and Chemistry, 5 Putnis, A. and Lieberman, R.C., editors). Cambridge University Press, Cambridge, UK, 551 pp.Google Scholar
Cairncross, B., Beukes, N. and Gutzmer, J. (1997) The Manga ne se Adv enture: The South Afr ican Manganese Fields. Associated Ore and Metal Corporation Limited. Marshalltown, Johannesburg, Republic of South Africa, 236 pp.Google Scholar
Cotton, F.A. (1971) Chemical Applications of Group Theory. Wiley-Interscience, New York, Chichester, UK, Brisbane, Australia, Toronto, Canada, Singapore.Google Scholar
Frentrup, K.R. and Langer, K. (1981) Mn3+ in garnets: Optical absorption spectrum of a synthetic Mn3+-bearing silicate garnet. Neues Jahrbuch für Mineralogie Monatshefte, 245256.Google Scholar
Gaudefroy, C., Orliac, M., Permingeat, F. and Parfenoff, A. (1969) L’henritermierite, une nouvelle espèce minérale. Bullé tin de la Socié té Franc¸aise de Minéralogie et de Cristallographie, 92, 185190.Google Scholar
Geiger, C.A., Stahl, A. and Rossman, G.R. (1999) Raspberry-red grossular from Sierra de Cruces Range, Coahuila, Mexico. European Journal of Mineralogy, 11, 11091113.CrossRefGoogle Scholar
Kersten, M., Langer, K., Almen, H. and Tillmanns, E. (1987) Kristallchemie von Piemontiten: Strukturverfeinerungen und polarisierte Einkristallspektren. Zeitschrift für Kristallographie, 178, 212.Google Scholar
Langer, K. and Lattard, D. (1984) Mn3+ in garnets II: Optical absorption spectra of blythite-bearing, synthetic calderites, Mn2+3 [8](Fe3+ 1-nMn3+ n)2[6][SiO4]3. Neues Jahrbuch für Mineralogie Abhandlungen, 149, 129141.Google Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray micro-analysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 1336.Google Scholar
Smith, G., Hålenius, U. and Langer, K. (1982) Low temperature spectral studies of Mn3+-bearing andalusite and epidote type minerals in the range 30000–5000 cm–1. Physics and Chemistry of Minerals, 8, 136142.CrossRefGoogle Scholar