Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T05:24:15.428Z Has data issue: false hasContentIssue false

Silesiaite, ideally Ca2Fe3+Sn(Si2O7)(Si2O6OH), a new species in the kristiansenite group: crystal chemistry and structure of holotype silesiaite from Szklarska Poręba, Poland, and Sc-free silesiaite from Häiviäntien, Finland

Published online by Cambridge University Press:  25 January 2023

Adam Pieczka*
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Sylwia Zelek-Pogudz
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bożena Gołębiowska
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Katarzyna M. Stadnicka
Affiliation:
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Roy Kristiansen
Affiliation:
Retired chemical engineer, N-1650 Sellebakk, Norway
*
*Author for correspondence: Adam Pieczka, Email: pieczka@agh.edu.pl

Abstract

Two silesiaite crystals, one from Szklarska Poręba, Poland (type locality), and the other from Häiviäntien, Finland, were studied with electron-probe microanalysis, Raman spectroscopy and single-crystal X-ray diffraction. The crystals have the following compositions normalised to 13 O2– + 1 (OH) anions: Ca2.001(2)[(Sn1.105(6)Zr0.009(1))Σ1.114(Fe3+0.523(78)Sc0.185(62)Al0.070(14))Σ0.779(Fe2+0.065(12)Mn2+0.041(5)Mg0.003(3))Σ0.110]Σ2.003(Si3.997(2)O13OH), and Ca2.006(8)[(Sn1.110(18)Ti0.006(3))Σ1.107(Fe3+0.648(50)Al0.063(11))Σ0.710(Fe2+0.140(30)Mn2+0.011(3)Mg0.005(2))Σ0.155(Nb0.020(6)Ta0.011(3))Σ0.040]Σ2.009(Si3.991(14)O13OH), respectively. The structure of the crystals was refined in the triclinic system with unconventional space-group symmetry C1 to R1 = 2.02% and 3.56%, respectively. The unit cells were found to be a = 10.0080(2), b = 8.3622(1), c = 13.2994(2) Å, α = 89.987(1), β = 109.095(2), γ = 89.978(1)° and V = 1051.77(3) Å3 for silesiaite from Szklarska Poręba, and a = 9.9985(3), b = 8.3446(2), c = 13.2760(4) Å, α = 89.986(3), β = 109.122(2), γ = 90.020(2)° and V = 1046.55(5) Å3 for silesiaite from Häiviäntien. In both crystals, the Ca sites are occupied solely by calcium and Si sites by silicon atoms. Optimised occupancies of the four M sites indicated slightly different site fillings. In the Szklarska Poręba silesiaite, the M1 site is predominantly occupied by trivalent Fe + Sc and the M2–M4 sites by Sn. In contrast, in the Häiviäntien silesiaite, the M1–M3 sites are Sn-dominant, while Fe3+ predominantly occupies the M4 site. The differences can be considered a result of an evolution of the M1–M4 site occupancies following a decrease of the <M–O> distance. Among the minerals of the kristiansenite group, Sc-free silesiaite from the Häiviäntien pegmatite has the smallest average radius of M-site cations and a unit-cell volume that increases proportionally to the (Fe2+ ± Sc) content. The hydrogen atoms form moderate hydrogen bonds between disilicate groups (Si2O7 and Si2O6OH) linked in rows along [101], indicating the presence of one hydroxyl in the formula calculated for Z = 4. All three kristiansenite-group species, i.e. silesiaite, kozłowskiite and kristiansenite, are isostructural.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Terence Graham

References

Alviola, R., Mänttäari, I., Mäkitie, H. and Vaasjoki, M. (2001) Svecofennian rare-element granitic pegmatites of the Ostrobothia region, Western Finland: their metamorphic environment and time of intrusion. Geological Survey of Finland, Special Paper, 30, 929.Google Scholar
Berg, G. (1923) Der Granit des Riesengebirges und seine Ganggesteine (Petrographische Studien). Abhandlungen der Preussischen Geologischen Landesanstalt N.F., 94. Berlin.Google Scholar
Borkowska, M. (1966) Petrography of Karkonosze granite. Geologia Sudetica, 2, 7119.Google Scholar
Cepedal, A., Fuertes-Fuente, M. and Martin-Izard, A. (2021) Occurrence of silesiaite, a new calcium-iron-tin sorosilicate in the calcic skarn of El Valle-Boinás, Asturias, Spain. European Journal of Mineralogy, 33, 165174.CrossRefGoogle Scholar
Crystal Impact (2014) Diamond – Crystal and Molecular Structure Visualization. Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/diamond.Google Scholar
Evans, R.J., Gołębiowska, B., Groat, L.A. and Pieczka, A. (2018) Crystal structure of kristiansenite from Szklarska Poręba, southwestern Poland. Minerals, 8, 584.CrossRefGoogle Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M. and Raade, G. (2001) Crystal structure of kristiansenite: a case of class IIB twinning by metric merohedry. Zeitschrift für Kristallographie, 216, 442448.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google ScholarPubMed
Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy, Eighth Edition. John Wiley & Sons, Inc., USA.Google Scholar
Guastoni, A. and Pezzotta, F. (2004) Kristiansenite a Baveno, secondo ritrovamento mondiale della specie. Rivista Mineralogica Italiana, 2004, 247251.Google Scholar
Karwowski, Ł., Olszyński, W. and Kozłowski, A. (1973) Wolframite mineralization from the vicinity of Szklarska Poręba Huta. Przegląd Geologiczny, 21, 633637 [in Polish].Google Scholar
Kozłowski, A., Karwowski, Ł. and Olszyński, W. (1975) Tungsten-tin-molybdenum mineralization in the Karkonosze massif. Acta Geologica Polonica, 25, 415430.Google Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Olszyński, W., Kozłowski, A. and Karwowski, Ł. (1976) Bismuth minerals from the Karkonosze massif. Acta Geologica Polonica, 26, 443449.Google Scholar
Pieczka, A. and Gołębiowska, B. (2012) Cuprobismutite homologues in granitic pegmatites from Szklarska Poręba, Karkonosze Massif, Southwestern Poland. The Canadian Mineralogist, 50, 313324.CrossRefGoogle Scholar
Pieczka, A., Ma, C., Rossman, G.R., Evans, R.J., Groat, L.A. and Gołębiowska, B. (2017) Silesiaite, IMA 2017-064. CNMNC Newsletter No. 40, December 2017, page 1578. Mineralogical Magazine, 81, 15771581.Google Scholar
Pieczka, A., Zelek-Pogudz, S., Gołębiowska, B., Stadnicka, K.M. and Evans, R.J. (2022a) Kozłowskiite, IMA 2021-081. CNMNC Newsletter 65. Mineralogical Magazine, 86, 12.Google Scholar
Pieczka, A., Zelek-Pogudz, S., Gołębiowska, B., Stadnicka, K.M. and Evans, R.J. (2022b) Kozłowskiite, ideally Ca4Fe2+Sn3(Si2O7)2(Si2O6OH)2, a new kristiansenite-type mineral from Szklarska Poręba, Lower Silesia, Poland. Mineralogical Magazine, 86, 507517.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Prado-Herrero, P., Garcia-Guinea, J., Crespo-Feo, E., Correcher, V. and Menor, C. (2009) First find of kristiansenite in Spain: Comparison with the type specimen by non-destructive techniques. Estudos Geológicos, 19, 135139.Google Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristiansenite, a new calcium–scandium–tin sorosilicate from granite pegmatite in Tørdal, Telemark, Norway. Mineralogy and Petrology, 75, 8999.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2020) CrysAlisPro Software system, versions 1.171.40.84a and 1.171.41.93a. Rigaku Corporation, Wroclaw, Poland.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google ScholarPubMed
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google ScholarPubMed
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Výravský, J, Škoda, R. and Novak, M. (2017) Kristiansenite, thortveitite and ScNbO4: Products of Ca-metasomatism of Sc-enriched columbite-(Mn) from NYF pegmatite Kožichovice II, Czech Republic. PEG2017, NGF, Abstracts and Proceedings, 2, 169172.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Supplementary material: PDF

Pieczka et al. supplementary material

Pieczka et al. supplementary material 1

Download Pieczka et al. supplementary material(PDF)
PDF 298.7 KB
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material 2

Download Pieczka et al. supplementary material(File)
File 1.9 MB
Supplementary material: Image

Pieczka et al. supplementary material

Pieczka et al. supplementary material 3

Download Pieczka et al. supplementary material(Image)
Image 58.9 MB
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material 4

Download Pieczka et al. supplementary material(File)
File 22.9 KB
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material 5

Download Pieczka et al. supplementary material(File)
File 22.9 KB