Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:38:08.612Z Has data issue: false hasContentIssue false

The role of fractional crystallization and late-stage peralkaline melt segregation in the mineralogical evolution of Cenozoic nephelinites/phonolites from Saghro (SE Morocco)

Published online by Cambridge University Press:  05 July 2018

J. Berger*
Affiliation:
Section de Géologie Isotopique, Musée Royal de l’Afrique Centrale, 3080 Tervuren, Belgium Laboratoire de Géochimie Isotopique et Géodynamique Chimique, CP160/02, Université Libre de Bruxelles (U.L.B.), 1050 Brussels, Belgium UMR CNRS 6250 “LIENSs”, Université de La Rochelle, ILE, 2 rue Olympe de Gouges 17042 La Rochelle Cedex- 1, France
N. Ennih
Affiliation:
Laboratoire de Géodynamique, Université d’El Jadida, BP20, 24000 El Jadida, Morocco
J.-C. C. Mercier
Affiliation:
UMR CNRS 6250 “LIENSs”, Université de La Rochelle, ILE, 2 rue Olympe de Gouges 17042 La Rochelle Cedex- 1, France UMR CNRS 6112 “Planétologie et Géodynamique (LPGN)”, Université de Nantes, BP 92205, 2 rue de la Houssinière, 44322 Nantes, France
J.-P. LiéGeois
Affiliation:
Section de Géologie Isotopique, Musée Royal de l’Afrique Centrale, 3080 Tervuren, Belgium
D. Demaiffe
Affiliation:
Laboratoire de Géochimie Isotopique et Géodynamique Chimique, CP160/02, Université Libre de Bruxelles (U.L.B.), 1050 Brussels, Belgium
*

Abstract

The Saghro Cenozoic lavas form a bimodal suite of nephelinites (with carbonatite xenoliths) and phonolites emplaced in the Anti-Atlas belt of Morocco. Despite the paucity of samples with intermediate composition between the two main types of lava (only one phonotephrite flow is reported in this area), whole-rock major element modelling shows that the two main lithologies can be linked by fractional crystallization. The most primitive modelled cumulates are calcite-bearing olivine clinopyroxenites, whereas the final stages of differentiation are characterized by the formation of nepheline-syenite cumulates. This evolution trend is classically observed in plutonic alkaline massifs associated with carbonatites. Late-stage evolution is responsible for the crystallization of hainite- and delhayelite-bearing microdomains, for the transformation of aegirine-augite into aegirine (or augite into aegirine-augite), and for the crystallization of lorenzenite and a eudialyte-group mineral as replacement products of titanite. These phases were probably formed, either by crystallization from late residual peralkaline melts, or by reaction of pre-existing minerals with such melt, or hydrothermal peralkaline fluid.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atencio, D., Coutinho, J.M.V., Ulbrich, M.N.C., Vlach, S.R.F., Rastsvetaeva, R.K. and Pushcharovsky, D.Y. (1999) Hainite from Pocos de Caldas, Minas Gerais, Brazil. The Canadian Mineralogist, 37, 91—98.Google Scholar
Baker, I. (1968) Intermediate oceanic volcanic rocks and the ‘Daly gap’. Earth and Planetary Science Letters, 4, 103—106.CrossRefGoogle Scholar
Berger, J., Ennih, N., Liegeois, J-P., Nkono, C., Mercier, J-C. C. and Demaiffe, D. (2008) A complex multichamber magmatic system beneath a late Cenozoic volcanic field: evidence from CSDs and thermo- barometry of clinopyroxene from a single nepheli- nite flow (Djbel Saghro, Morocco). Pp. 505—520 in: The Boundaries of the West African Craton(N. Ennih and J-P. Liegeois, editors). Special Publications, 297, Geological Society of London.Google Scholar
Berrahma, M. and Delaloye, M. (1989) New geochronological data on the volcanic massif of Siroua (Anti-Atlas, Morocco). Journal of African Earth Sciences, 9, 651—656.Google Scholar
Berrahma, M., Delaloye, M., Faure-Muret, A. and Rachdi, H.E.N. (1993) Premieres donnees ge:o- chronologiques sur le volcanisme alcalin du Jbel Saghro, Anti-Atlas, Maroc. Journal of African Earth Sciences, 17, 333—341.Google Scholar
Coulson, I.M. (1997) Post-magmatic alteration in eudialyte from the North Qoroq centre, South Greenland. Mineralogical Magazine, 61, 99—109.CrossRefGoogle Scholar
Currie, K.L., Eby, G.N. and Gittins, J. (1986) The petrology of the Mt. Saint Hilaire complex, southern Quebec: an alkaline gabbro-peralkaline syenite association. Lithos, 19, 67—83.CrossRefGoogle Scholar
Daly, R.A. (1910) The origin of alkaline rocks. Science, 32, 220.Google Scholar
Damasceno, D., Scoates, J.S., Weis, D., Frey, F.A. and Giret, A. (2002) Mineral chemistry of mildly alkalic basalts from the 25 Ma Mont Crozier section, Kerguelen archipelago: Constraints on phenocryst crystallization environments. Journal of Petrology, 43, 1389—1413.CrossRefGoogle Scholar
Dawson, J.B. and Hill, P.G. (1998) Mineral chemistry of a peralkaline combeite-lamprophyllite nephelinite from Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 62, 179—196.CrossRefGoogle Scholar
de Sitter, L.U., de Sitter-Koomans, C.M. and Heetveld, H. (1952) Les phonolites du Jebel Saghro (Maroc occidental). Geologie en Mijnbouw, 8, 267—276.Google Scholar
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R. and Demaiffe, D. (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review. Lithos, 85, 48—75.CrossRefGoogle Scholar
Freise, M., Holtz, F., Koepke, J., Scoates, J. and Leyrit, H. (2003) Experimental constraints on the storage conditions of phonolites from the Kerguelen archipelago. Contributions to Mineralogy and Petrology, 145, 659—672.CrossRefGoogle Scholar
Gee, L.L. and Sack, R.O. (1988) Experimental petrology of melilite nephelinites. Journal of Petrology, 29, 1233—1255.CrossRefGoogle Scholar
Hamilton, D.L. (1961) Nephelines as crystallisation temperature indicators. Journal of Geology, 69, 321—329.CrossRefGoogle Scholar
Ibhi, A. (2000) Le volcanisme Plio-Quaternaire de Saghro (Anti-Atlas, Maroc) et les enclaves basiques et ultrabasiques associees. PhD thesis, University of Agadir, Morocco, 354 pp.Google Scholar
Ibhi, A., Nachit, H., Abia, E.H. and Hernandez, J. (2002) Intervention des segregats carbonatitiques dans la petrogenese des nephelinites a pyroxene de Jbel Saghro (Anti-Atlas, Maroc). Bulletin de la Societe Geologique de France, 173, 37—43.CrossRefGoogle Scholar
Kogarko, L.N. and Romanchev, B.P. (1977) Temperature, pressure, redox conditions and mineral equilibria in agpaitic nepheline syenites and apatite- nepheline rocks. Geochemistry International, 14, 113—128.Google Scholar
Kogarko, L.N., Kononova, V.A., Orlova, M.P. and Woolley, A.R. (1995) Alkaline Rocks and Carbonatites of the World: Part 2, Former USSR. Chapman and Hall, London, 225 pp.Google Scholar
Larsen, L.M. and ϕrensen, H. (1987) The Ilimaussaq intrusion: progressive crystallization and formation of layering in an agpaitic magma. Pp. 473—488 in: Alkaline Igneous Rocks(J.G. Fitton and B.G.J. Upton, editors). Special Publications, 30, Geological Society of London.Google Scholar
Lee, W.J. and Wyllie, P.J. (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology, 39, 2005—2013.Google Scholar
Liegeois, J-P., Benhallou, A., Azzouni-Sekkal, A., Yahiaoui, R. and Bonin, B. (2005) The Hoggar swell and volcanism: Reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. Pp. 379—400 in: Plates, Plumes and Paradigms Google Scholar
G.R.Foulger, J.H. Natland, D.C. (Presnall and D.L. Anderson, editors). Special Paper 388, Geological Society of America.Google Scholar
Lustrino, M. and Wilson, M. (2007) The circum- Mediterranean anorogenic Cenozoic igneous province. Earth Science Reviews, 81, 1—65.CrossRefGoogle Scholar
Malusa, M.G., Polino, R., Feroni, A.C., Ellero, A., Ottria, G., Baidder, L. and Musumeci, G. (2007) Post-variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova, 19, 481—489.CrossRefGoogle Scholar
Marks, M. and Markl, G. (2003) Ilimaussaq ‘en miniature’: closed-system fractionation in an agpai- tic dyke rock from the Gardar province, South Greenland (contribution to the mineralogy of Ilimaussaq no. 117). Mineralogical Magazine, 67, 893—919.CrossRefGoogle Scholar
Marks, M.A.W., Schilling, J., Coulson, I.M., Wenzel, T. and Markl, G. (2008) The alkaline-peralkaline Tamazeght complex, High Atlas mountains, Morocco: Mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 49, 1097—1131.CrossRefGoogle Scholar
Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43, 2049—2068.Google Scholar
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352—372.CrossRefGoogle Scholar
Moreau, C., Ohnenstetter, D., Demaiffe, D. and Robineau, B. (1996) The Los archipelago nepheline syenite ring-structure: A magmatic marker of the evolution of the central and equatorial Atlantic. The Canadian Mineralogist, 34, 281—299.Google Scholar
Munoz, M., Sagredo, J., de Ignacio, C., Fernandez-Suarez, J. and Jeffries, T.E. (2005) New data (U-Pb, K-Ar) on the geochronology of the alkaline- carbonatitic association of Fuerteventura, Canary Islands, Spain. Lithos, 85, 140—153.CrossRefGoogle Scholar
Platz, T., Foley, S.F. and Andre, L. (2004) Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga province, DR Congo. Journal of Volcanology and Geothermal Research, 136, 269—295.CrossRefGoogle Scholar
Putirka, K.D., Mikaelian, H., Ryerson, F. and Shaw, H. (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake river plain, Idaho. American Mineralogist, 88, 1542—1554.CrossRefGoogle Scholar
Richet, P., Lejeune, A.M., Holtz, F. and Roux, J. (1996) Water and the viscosity of andesite melts. Chemical Geology, 128, 185—197.CrossRefGoogle Scholar
Ridolfi, F., Renzulli, A., Macdonald, R. and Upton, B.G.J. (2006) Peralkaline syenite autoliths from Kilombe volcano, Kenya rift valley: Evidence for subvolcanic interaction with carbonatitic fluids. Lithos, 91, 373—392.CrossRefGoogle Scholar
Sahama, T.G. and Kai Hytonen, M.A. (1959) Delhayelite, a new silicate from the Belgian Congo Mineralogical Magazine, 32, 6—9.Google Scholar
Schmitt, A.K., Trumbull, R.B., Dulski, P. and Emmermann, R. (2002) Zr-Nb-REE mineralization in peralkaline granites from the Amis complex, Brandberg (Namibia): Evidence for magmatic preenrichment from melt inclusions. Economic Geology, 97, 399—413.CrossRefGoogle Scholar
Schonenberger, J., Marks, M., Wagner, T. and Markl, G. (2006) Fluid-rock interaction in autoliths of agpaitic nepheline syenites in the Ilimaussaq intrusion, South Greenland. Lithos, 91, 331—351.CrossRefGoogle Scholar
ϕrensen, H. (1997) The agpaitic rocks - an overview. Mineralogical Magazine, 61, 485—498.Google Scholar
Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New mineral data from the kamafugite-carbonatite association: The melilitolite from Pian di Celle, Italy. Mineralogy and Petrology, 61, 27—45.CrossRefGoogle Scholar
Tesčm, E. and Teixell, A. (2008) Sequence of thrusting and syntectonic sedimentation in the eastern SubAtlas thrust belt (Dades and Mgoun valleys, Morocco). International Journal of Earth Sciences, 97, 103—113.Google Scholar
Thompson, G.M., Smith, I.E.M. and Malpas, J.G. (2001) Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: An example from Rarotonga. Contributions to Mineralogy and Petrology, 142, 336—346.Google Scholar
Ulbrich, H.H., Vlach., S.R.F., Demaiffe, D. and Ulbrich, M.N.C. (2005) Structure and origin of the Pocos de Caldas alkaline massif, S.E. Brazil. Pp. 367—418 in: Mesozoic to Cenozoic alkaline magmatism in the Brazilian platform(P. Comin-Chiaramonti and C.B. Gomez, editors). Edit. de Universidade Sao Paulo, Brazil.Google Scholar
Ulmer, P. (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition - an experimental study to 30 kbars. Contributions to Mineralogy and Petrology, 101, 261—273.CrossRefGoogle Scholar
Ulrych, J., Pivec, E., Rychly, R. and Rutsek, J. (1992). Zirconium mineralization of young alkaline volcanic rocks from northern Bohemia. Geologica Carpathica, 43, 91—95.Google Scholar
Verhulst, A., Balaganskaya, E., Kirnarsky, Y. and Demaiffe, D. (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola peninsula, NW Russia). Lithos, 51, 1—25.CrossRefGoogle Scholar
Wolff, J.A. (1987) Crystallization of nepheline syenite in a subvolcanic magma system: Tenerife, Canary Islands. Lithos, 20, 207—223.CrossRefGoogle Scholar
Wolff, J.A. and Toney, J.B. (1993) Trapped liquid from a nepheline syenite - a reevaluation of Na-rich, Zrrich, F-rich interstitial glass in a xenolith from Tenerife, Canary Islands. Lithos, 29, 285—293.CrossRefGoogle Scholar