Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T06:18:45.961Z Has data issue: false hasContentIssue false

Redefinition of thalénite-(Y) and discreditation of fluorthalénite-(Y): A re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities

Published online by Cambridge University Press:  02 January 2018

Radek Škoda*
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, CZ-182 21, Czech Republic
Erik Jonsson
Affiliation:
Department of Mineral Resources, Geological Survey of Sweden, Box 670, SE-751 28 Uppsala, Sweden Department of Earth Sciences, CEMPEG, Uppsala University, SE-752 36 Uppsala, Sweden
Renata Čopjaková
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Jörgen Langhof
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Michaela Vašinová Galiová
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
*

Abstract

Using type material from the Österby pegmatite in Dalarna, Sweden, the chemical composition and structural parameters of thalénite-(Y) [ideally Y3Si3O10(OH)] were examined by wavelength dispersive spectroscopy electron microprobe (WDS EMP) analysis and single-crystal X-ray diffraction. High contrast back-scatter electron images of the Österby material show at least two generations of thalénite-(Y). The formula of the primary thalénite-(Y) normalized to 11 anions is (Y2.58Dy0.11Yb0.09Gd0.06Er0.06Ho0.02Sm0.02Tb0.02Lu0.02Nd0.01Tm0.01)Σ3.00Si3.01O10F0.97OH0.03. The secondary thalénite-(Y), replacing the primary material, is weakly enhanced in Y and depleted in the lightest and the heaviest rare-earth elements, yielding the formula (Y2.63Dy0.12Yb0.06Gd0.06Er0.05Ho0.02Sm0.02Tb0.02Tm0.01Nd0.01Lu0.01)Σ3.00Si3.01O10F0.98OH0.02. Structural data for thalénite-(Y) from Österby clearly indicate the monoclinic space group P21/n, with a = 7.3464(4), b = 11.1726(5), c = 10.4180(5) Å, β = 97.318(4)°, V = 848.13(7) Å3, Z = 4, which is consistent with previous investigations. The structure was refined from single-crystal X-ray diffraction data to R1 = 0.0371 for 1503 unique observed reflections, and the final chemical composition obtained from the refinement, (Y2.64Dy0.36)Σ3.00F0.987[Si3O10], Z = 4, is in good agreement with the empirical formula resulting from electron microprobe (EMP) analysis. Both techniques reveal a strong dominance of F over OH, which means that the type material actually corresponds to the fluorine analogue. Moreover, new EMP analyses of samples of thalénite-(Y) from an additional seven localities (Åskagen and Reunavare in Sweden; White Cloud and Snow Flake in Colorado, USA; the Guy Hazel claim in Arizona, USA; Suishoyama and Souri in Japan) clearly show the prevalence of F over OH as well. Based on these observations, the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association has recommended a redefinition of the chemical composition of thalénite-(Y) to represent the F-dominant species with the ideal formula Y3Si3O10F, as it has historical priority. Consequently, the later described fluorthalénite-(Y) has to be discredited.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.W. and Sharp, W.H. (1972) Thalenite and allanite derived from yttrofluorite in the White Cloud pegmatite, South Platte area, Colorado. United States Geological Survey Professional Paper, 800-C, 6369.Google Scholar
Adams, J.W., Hildebrand, F.A. and Havens, R.G. (1962) Thalenite from Teller County, Colorado. United States Geological Survey Professional Paper, 450-D, 68.Google Scholar
Andersson, U.B., Hogdahl, K., Sjostrom, H. and Bergman, S. (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geological Magazine, 143, 679697.CrossRefGoogle Scholar
Badanina, E.V., Trumbull, R.B., Dulski, P., Wiedenbeck, M., Veksler, I.V. and Syritso, L.M. (2006) The behavior of rare-earth and lithophile trace elements in rare-metal granites: A study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia. The Canadian Mineralogist, 44, 667692.CrossRefGoogle Scholar
Becerro, A.I., Naranjo, M., Perdigon, A.C. and Trillo, J.M. (2003) hydrothermal chemistry of silicates: low temperature synthesis of yttrium disilicate. Journal of the American Ceramic Society, 86, 15921594.CrossRefGoogle Scholar
Benedicks, C. (1898) Hr Benedicks forevisade ett af honom upptackt mineral, Thalenit, fran Osterby i Dalarne och redogjorde for sina undersokningar ofver detta, efter prof. R. Thalen uppkallade mineral. Geologiska Foreningens i Stockholm Forhandlingar, 20, 308312.Google Scholar
Benedicks, C. (1900) Thalenit, ein neues Mineral aus Osterby in Dalekarlien. Bulletin of the Geological Institution of the University of'Upsala, IV, 1—15.Google Scholar
Bjorlykke, H. (1939) Feltspat V. De sjeldne mineraler pa de Norske granittiske pegmatittganger. Norges Geologiske Undersokelse, 154.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.Google Scholar
Brotzen, O. (1959) Mineral-association in granitic pegmatites. A statistical study. Geologiska Foreningens i Stockholm Forhandlingar, 81, 231296.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Ada Crystallographica, B41, 244247.Google Scholar
Cao, M.-J., Zhou, Q.-F., Qin, K.-Z., Tang, D.-M. and Evans, NJ. (2013) The tetrad effect and geochem-istry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Mineralogy and Petrology, 107, 9851005.CrossRefGoogle Scholar
Cerny, P. (1991) Rare-element granitic pegmatites, Part 1: anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18, 4967.Google Scholar
Copjakova, R., Skoda, R., Vasinova Galiova, M. and Novak, M. (2013) Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Tfebic Pluton, Moldanubian Zone, Czech Republic.Google Scholar
Journal of Geosciences, 58, 113131.Google Scholar
Copjakova, R., Skoda, R., Vasinova Galiova, M. and Novak, M. (2015) Scandium-and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group minerals from the mixed (NYF + LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). American Mineralogist, 100, 14341451.CrossRefGoogle Scholar
Dolejs, D. and Stemprok, M. (2001) Magmatic and hydrothermal evolution of Li-F granites: Cinovec and Krasno intrusions, Krusne hory batholith, Czech Republic. Bulletin of the Czech Geological Survey, 76, 7799.Google Scholar
Fialin, M., Henoc, J. and Remond, G. (1993) A survey of electron microprobe microanalysis using soft radiations: difficulties and presentation of a new computer program for wavelength dispersive spec-trometry. Scanning Microscopy Supplement, 7, 153166.Google Scholar
Fitzpatrick, J. and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188193.Google Scholar
Flink, G. (1910) Bidrag till Sveriges mineralogi II. Arkiv for kemi, mineralogi och geologi, 3, 35, 1166.Google Scholar
Flink, G. (1917) Bidrag till Sveriges mineralogi IV. Arkiv for kemi, mineralogi och geologi, 6, 21, 1149.Google Scholar
Geisler, T., Rashwan, A.A., Rahn, M.K.W., Poller, U., Zwingmann, H., Pidgeon, R.T., Schleicher, H. and Tomaschek, F. (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67, 485508.CrossRefGoogle Scholar
Geisler, T., Schaltegger, U. and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements, 3, 4350.CrossRefGoogle Scholar
Goldoff, B., Webster, J.D. and Harlov, D.E. (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97, 11031115.CrossRefGoogle Scholar
Gonzalez del Tanago, J., La Iglesia, A. and Delgado, A. (2006) Kamphaugite-(Y) from La Cabrera massif, Spain: a low-temperature hydrothermal Y-REE carbonate. Mineralogical Magazine, 70, 397404.CrossRefGoogle Scholar
Griffin, W.L., Nilssen, B. and Jensen, B.B. (1979) Britholite-(Y) and its alteration: Reiarsdal, Vest-Agder, south Norway. Norsk Geologisk Tidsskrifi, 58, 265271.Google Scholar
Hillebrand, W.F. (1902) The composition of yttrialite with a criticism of the formula assigned to thalenite. American Journal of Science, 4* series, 13, 145152.CrossRefGoogle Scholar
Hjelmqvist, S. and Lundqvist, G. (1953) Beskrivning till kartbladet Sater. Sveriges Geologiska Undersokning serie Aa, 194, 1-97.Google Scholar
Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Ada, 63, 489508.CrossRefGoogle Scholar
Ito, J. and Johnson, H. (1968) Synthesis and study of yttrialite. American Mineralogist, 53, 19401952.Google Scholar
Jang, K.H., IChaidukov, N.M., Tuyen, V.P., Kim, S.I., Yu, Y.M. and Seo, H.J. (2012) Luminescence properties and crystallographic sites for Eu + ions in fiuorthalenite Y3Si3OioF. Journal of Alloys and Compounds, 536, 4751.CrossRefGoogle Scholar
Jonsson, E., Hogdahl, K., Majka, J. and Murashko, M. (2014) Te-Cu-rich sudburyite—the first platinum-group-element mineral from the selenide mineralization at Skrikerum, Sweden. Neues Jahrbuch fur Mineralogie Abhandlungen, 191, 137144.CrossRefGoogle Scholar
Kornev, A.N., Batalieva, N.G., Maksimov, B.A., Ilyukhin, V.V. and Belov, N.V. (1972) Crystal structure of thalenite, Y3(Si3O10)(OH). Doklady Akademii Nauk SSSR, 202, 13241327.Google Scholar
Kozireva, I.V., Svecova, I.V. and Popova, T.N. (2004) Occurence of Nd thalenite in Pripolar Ural. Vestnik, 6, 23.Google Scholar
Kxistiansen, R. (1993) Thalenitt-liknende mineraler fra Askagen, Sverige. Stein, 1, 7-8, 5960.Google Scholar
London, D. (2008) Pegmatites. Canadian Mineralogist Special Publication, 10, 1347.Google Scholar
Mason, B. and Roberts, C.N. (1949) Minerals of the Osterby pegmatite, Dalarna, Sweden. Geologiska Foreningens i Stockholm Forhandlingar, 71, 537544.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microana-lysis. Microchimica Ada, 114/115, 363—376.Google Scholar
Minakawa, T, Noto, S. and Morioka, H. (1999) Rare earth minerals in Shikoku, with special reference to the occurrence of rare earth minerals in pegmatites in Ryoke and Hiroshima granites. Memoirs of the Faculty of Science, Ehime University, 5, 132.Google Scholar
Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D. (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochimica et Cosmochimica Ada, 66, 11851196.CrossRefGoogle Scholar
Miiller-Bunz, H. and Schleid, T. (2000) Synthesis and constitution of fluorothalenite-type (Y3F [Si3Oi0]) fluoride catena-trisilicates M3F [Si3O10] with the lanthanides (M= Dy, Ho, Er). Zeitschrift fur anorganische und allgemeine Chemie, 626, 845852.Google Scholar
Nagashima, K and Kato, A. (1966) Chemical studies of minerals containing rarer elements from the far east district. LX. Thalenite from Suishoyama, Kawamata-machi, Fukushima Prefecture, Japan. Bulletin of the Chemical Society of Japan, 39, 925928.CrossRefGoogle Scholar
Nordenskiold, A.E. (1884) Motet den 7 November 1884. Frih. Nordenskiold redogjorde for nagra vigtigare mineralfynd under fornutne sommar. Geologiska Foreningens i Stockholm Forhandlingar, 7, 301302.Google Scholar
Ottolini, L., Camara, F. and Bigi, S. (2000) An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF. American Mineralogist, 85, 89102.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge nipping algorithm in crystallography. Ada Crystallographica, B69, 1—16.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superfiip-a computer program for the solution of crystal structures by charge nipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Peretyazhko, I.S. and Savina, E.A. (2010) Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immisci-bility in magmatic systems. Journal of Petrology, 18, 514543.CrossRefGoogle Scholar
Petersson, W. (1890) Studier ofver gadolinit. Geologiska Foreningens i Stockholm Forhandlingar, 12, 275347.CrossRefGoogle Scholar
Petficek, V., Dusek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Praha, Czech Republic.Google Scholar
Petficek, V., Dusek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift fur Kristallographie, 229, 345352.Google Scholar
Putnis, A. and Putnis, C.V. (2007). The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 17831786.CrossRefGoogle Scholar
Raade, G. and ICristiansen, R. (2009). Fluorthalenite-(Y) from Hundholmen, Tysfjord, north Norway. Norsk Bergverksmuseum skrift, 41, 2124.Google Scholar
Raudsepp, M. (1995) Recent advances in the electron-probe micro-analysis of minerals for the light elements. The Canadian Mineralogist, 33, 203218.Google Scholar
Schetelig, J. (1931) Remarks on thalenite from some new occurrences in southern Norway. Norsk Geologisk Tidsskrift, 12, 508519.Google Scholar
Schleid, T. and Muller-Bunz, H. (1998). Einkristalle von Y3F [Si3O10] im Thalenit-Typ. Zeitschrift fur anorganische und allgemeine Chemie, 624, 10821084.3.0.CO;2-0>CrossRefGoogle Scholar
Sjogren, H. (1906) Thalenit fran Askagens kvartsbrott i Varmland. Geologiska Foreningens i Stockholm Forhandlingar, 28, 93101.CrossRefGoogle Scholar
Skoda, R., Cempirek, J., Filip, J., Novak, M., Veselovsky, F. and Ctvrtlik, R. (2012) Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Askagen, Sweden. American Mineralogist, 97, 983988.CrossRefGoogle Scholar
Stalhos, G (1991) Beskrivning till berggrundskartorna Osthammar NV, NO, SV, SO. Sveriges Geologiska Undersokning serie Af, 161, 166, 169 and 172. Swedish Geological Survey, Uppsala, Sweden, 249 pp.Google Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L., Sokolova, E., Hawthorne, F.C. and DobrovoFskaya, E.A. (2012) Tarbagataite, (K,D)2(Ca,Na)(Fe2+,Mn)7Ti2(Si4O12)2O2(OH)4(OH,F), a new astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas mountains, Kazakhstan: Description and crystal structure. The Canadian Mineralogist, 50, 159168.CrossRefGoogle Scholar
Stephens, M.B., Ripa, M., Lundstrom, I., Persson, L., Bergman, T., AM, M., Wahlgren, C.-H., Persson, P.-O. and Wickstrom, L. (2009) Synthesis of the bedrock geology in the Bergslagen region, Fennoscadian Shield, south-central Sweden. Sveriges Geologiska Undersokning serie Ba, 58, 1259.Google Scholar
Stromer, JrJ.C., Pierson, MX. and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite. American Mineralogist, 78, 641648.Google Scholar
Stromberg, A. (1996) Berggrundskartan 12F Ludvika NO. Sveriges Geologiska Undersokning serie Af, 174 (bedrock map). Swedish Geological Survey, Uppsala, Sweden.Google Scholar
Sundblad, K., Stein, H., Markey, R.J., Morgan, J.W. and Bergman, T. (1996) Re-Os age and geochemistry of highly evolved granites associated with Mo and W ore deposits in Bergslagen, Sweden. 7th International Symposium on Rapakivi Granites and Related Rocks. Abstract volume, pp. 73—74.Google Scholar
Sundius, N. (1952). Kvarts, faltspat och glimmer samt forekomster darav i Sverige. Sveriges Geologiska Undersokning serie C, 520, 1231.Google Scholar
Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B. (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69, 28472868.CrossRefGoogle Scholar
Voloshin, A.V. and Pakhomovskii, Y.A. (1997) Fluorthalenite-(Y)—a new mineral from the amazonitic randpegmatites of the Kola Peninsula. Doklady Akademii Nauk, 354, 7778.Google Scholar
Vorma, A., Ojanpera, P., Hoffren, V., Siivola, J. and Lofgren, A. (1966) On the rare earth minerals from the Pyoronmaa pegmatite in Kangasala. Comptes Rendu de la Societe Geologique de Finlande, 38, 241274.Google Scholar
Weibull, M. (1886) Om fluocerit fran Osterby i Dalarne. Geologiska Foreningens i Stockholm Fbrhandlingar, 8, 496500.CrossRefGoogle Scholar
Wu, C.-Z, Liu, S.-H., Gu, L.-X., Zhang, Z.-Z. and Lei, R.-X. (2011) Formation mechanism of the lanthanide tetrad effect for a topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. journal of Asian Earth Sciences, 42, 903916.CrossRefGoogle Scholar